
Анализ, геометрия и топология
Общ семинар на секцията
Следваща сбирка:
30 септември 2025 г., 11:00 часа, зала 403
Concircularly Semi-Symmetric Metric Connection
Miroslav Maksimović, University of Priština in Kosovska Mitrovica, Kosovska Mitrovica, Serbia, and Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
30 септември 2025 г., 11:00 часа, зала 403
Резюме: A concircularly semi-symmetric metric connection is a special class of semi-symmetric metric connection when its generator is a concircular vector. In this talk, we will present results on this connection on pseudo-Riemannian manifolds, and in particular, we will observe the application to Lorentzian manifolds and the theory of relativity. We demonstrate that a Lorentzian manifold reduces to a GRW space-time when the generator of the observed connection is a unit timelike vector. At the same time, the mentioned connection becomes a semi-symmetric metric P-connection. At the end, we determine the equation of state on a perfect fluid space-time. These are the results of a joint work with prof. Milan Zlatanović published in J. Geom. Phys. 217 (2025).
The lecturer is supported by the Scientific Programme “Enhancing the Research Capacity in Mathematical Sciences (PIKOM)”, No. DO1-67/05.05.2022.
Предишни сбирки:
Higher order estimates for Monge-Ampere type equations motivated by quaternionic geometry
Marcin Sroka, Jagiellonian University, Kraków, Poland
22 октомври 2024 г., 14:00 часа, зала 478
Резюме: In the talk I will discuss obstacles for obtaining higher order a priori estimates for equation introduced by Alesker and Verbitsky in 2010 on HKT manifolds in relation to Calabi type conjecture on those manifolds (and similar type PDEs studied since on hypercomplex manifolds). After presenting the state of art, I will focus on the key second order estimate. For the real Monge-Ampere equation on Riemannian manifolds it follows essentially by Pogorelov calculation, for the complex Monge-Ampere equation, in relation to Calabi conjecture, it was proven by Aubin and Yau. I will use those two as comparison to underline new difficulties related to concavity properties of quaternionic Monge-Ampere operator.
Unimodality Preservation by Ratios of Functional Series and Integral Transforms
Dmitrii Karp, Holon Institute of Technology, Holon, Israel
15 октомври 2024 г., 14:00 часа
Резюме: Elementary, but very useful lemma due to Biernacki and Krzyz (1955) asserts that the ratio of two power series inherits monotonicity from that of the sequence of ratios of their corresponding coefficients. Over the last two decades it has been realized that, under some additional assumptions, similar claims hold for more general series ratios and integral transforms as well as for unimodality in place of monotonicity. In the talk, we discuss conditions on the functional sequence and the kernel of an integral transform ensuring such property. Numerous series and integral transforms appearing in applications satisfy our sufficient conditions, including Dirichlet, factorial and inverse factorial series, Laplace, Mellin and generalized Stieltjes transforms, among many others. The key role in our considerations is played by the notion of sign regularity.
Complex Dirac structures on flag manifolds
Carlos Augusto Bassani Varea, Universidade Tecnológica Federal do Paraná, Brazil
23 януари 2024 г., 14:00 часа
Резюме:
In this talk we present a description of the invariant complex Dirac structures with constant real index on a maximal flag manifold in terms of the roots of the Lie algebra which defines the flag manifold. As a particular case, when the real index is zero, we have the description of all invariant generalized complex structures on a maximal flag manifold. We also present a classification of the complex Dirac structures under the action of B-transformation. This is a joint work with Cristian Ortiz (IME-USP).
Архив:
- 04.04.2023 – Петър Петров – Въведение в спектрална теория на графите
- 18.04.2023 – Петър Петров – Въведение в спектрална теория на графите, част 2
- 02.05.2023 – Петър Петров – Въведение в спектрална теория на графите, част 3
- 09.05.2023 – Davide Dameno, Department of Mathematics “Federigo Enriques”, University of Milan – Riemannian four-manifolds and twistor spaces: some rigidity results
- 13.06.2023 – Марин Генов – Функции холоморфни над крайно-мерни комплексни комутативни алгебри
- 04.07.2023 – Yacine Barhoumi-Andréani, University of Bochum, Germany – Independence Structures in Random Matrix Theory and Random Partitions
- 26.09.2023 – Alexander Stоimenov, Dongguk University, Republic of Korea – Burau Representation and Application to Reducibility and Exchangeability of Braids
- 07.11.2023 – Dmitrii Karp, Holon Institute of Technology, Holon, Israel – New and little known properties of the Fox and Fox-Wright functions
- 15.02.2022 – Cornelia-Livia Bejan, “Gheorghe Asachi” Technical University of Iasi, Romania – Kähler Manifolds of Quasi-constant Holomorphic Sectional Curvature and Generalized Sasakian Space Forms
- 29.03.2022 – Ahmed Yekta Ökten, Institut de Mathématiques de Toulouse, France – On Squeezing Function for Planar Domains
- 28.04.2022 – Гео Грънчаров, Florida International University, USA – Изотропни векторни полета и структури върху комплексни повърхнини
- 08.11.2022 – Leonard DAUS1, Marilena JIANU1 and Adela MIHAI1,2, 1 Technical University of Civil Engineering Bucharest, Romania, 2 Transilvania University of Brasov, Romania – Surfaces Associated with Pascal and Catalan Triangles
- 15.11.2022 – Teodor M. Atanackovic and Stevan Pilipovic, Serbian Academy of Sciences and Arts and University of Novi Sad, Serbia – Zener model with General fractional calculus: Thermodynamical Restrictions
- 14.12.2021 – Марин Генов, Въведение в хомологичната огледална симетрия на проективни равнини с тегла над комплексните числа
- 19.10.2021 – Севджан Хаккъев, Шуменски университет – Индексни теории и линейна устойчивост на периодични вълни
- 14.09.2021 – Dimitrios Georgiou, University of Patras, Greece – The Dimension Dind оf Finite Topological T0-Spaces
- 22.06.2021 – Виктория Бенчева – Обобщени ротационни повърхнини в 4-мерни псевдо-Евклидови пространства
- 18.05.2021 – Петър Петров – Формални околности в пространства от дъги
- 20.04.2021 – Николай Икономов – Алгоритъм на Висковатов за полиноми на Ермит-Паде
Your Content Goes Here
Your Content Goes Here
Your Content Goes Here
Your Content Goes Here
Your Content Goes Here
Your Content Goes Here
Your Content Goes Here
07.11.2023
New and little known properties of the Fox and Fox-Wright functions
Dmitrii Karp,
Holon Institute of Technology, Holon, Israel
Резюме. In the talk, I will introduce the functions H of Fox and W of Wright (its general case known as Fox-Wright function) and some motivation behind them. Then, I will discuss the extension of Gauss’ expansion and summation formulas for the hypergeometric function to the case of general Fox-Wright function and Norlund’s expansion for the Meijer’s G function to the case of Fox’s H function. I will further present positivity conditions for the so-called delta-neutral case of Fox’s H function making it a probability distribution (widely used in statistics), which rely on complete monotonicity of certain product ratios of Gamma functions. Moreover, I will exhibit a new integral equation for Fox’s H function and a conjecture regarding its zeros. Finally, some open problems will be presented.
26.09.2023
Burau Representation and Application to Reducibility and Exchangeability of Braids
Alexander Stоimenov,
Dongguk University, Republic of Korea
Резюме. I will give an introduction to the braid groups, closure operation, Markov theorem, and exchange move. Then I will introduce the Burau representation, and discuss its application to reducibiliy and exchangeability of braids.
04.07.2023
Independence Structures in Random Matrix Theory and Random Partitions
Yacine Barhoumi-Andréani,
University of Bochum, Germany
Резюме. We consider two models of random objects: eigenvalues of random matrices and random integer partitions for two classical measures: the GUE and the Schur measure. We express the largest element of these sets as maxima of independent random variables. The method uses orthogonal polynomials on the real line in the random matrix case and on the unit circle in the second case. The distribution involved in the random matrix case uses the sigma-form of Painlevé IV functions whose theory will be recalled.
13.06.2023
Функции холоморфни над крайно-мерни комплексни комутативни алгебри
Марин Генов,
Институт по математика и информатика – БАН
Резюме. Всеки морфизъм φ: A → B в категорията на крайно-мерните комплексни комутативни асоциативни унитални (Банахови) алгебри поражда структурен сноп от функции на една A-променлива и със стойности в B, чийто диференциал е съвместим с A-модулната структура на B. Оказва се, че макар и това да са изображения на няколко комплексни променливи, те притежават и много свойства на функциите на една комплексна променлива. Същевременно това дава възможност за изграждането на относителен комплексен анализ и относителна (на ниво скалари и в смисъла на Гротендик) комплексно-аналитична геометрия. В доклада ще разгледаме някои основни аспекти и въпроси на локалната аналитична теория.
09.02.2023
Riemannian four-manifolds and twistor spaces: some rigidity results
Davide Dameno,
Department of Mathematics “Federigo Enriques”, University of Milan
Резюме. It is well-known that four-dimensional Riemannian manifolds carry many peculiar properties, which give rise to the existence of unique canonical metrics. In order to find conditions for the existence of such metrics, in 1978 Atiyah, Hitchin and Singer adapted Penrose’s construction of twistor spaces to the Riemannian context, paving the way for the study of many other characterizations of curvature properties for Riemannian four-manifolds. After giving an overview of the Riemannian and Hermitian structures of twistor spaces in the four-dimensional case, we present some new rigidity results for Riemannian four-manifolds whose twistor spaces satisfy specific vanishing conditions (such as Bochner-flatness). This is based on joint work with Professors Giovanni Catino and Paolo Mastrolia.
02.05.2023
Въведение в спектрална теория на графите, част 3
Петър Петров,
Институт по математика и информатика – БАН
Резюме. Тази лекция съдържа спектрален подход към визуализацията и дзета функции на Ихара за прости графи. Както и преди, ударението ще бъде върху възможни приложения и формалните доказателства ще бъдат изложени накратко или въобще пропуснати. Ще се предполагат съвсем базисни познания по линейна алгебра и аналитични функции.
18.04.2023
Въведение в спектрална теория на графите, част 2
Петър Петров,
Институт по математика и информатика – БАН
Резюме. Втората лекция включва още някои основни понятия, като матрица на инцидентност и дуален граф. Графичното представяне на граф и разделяне на кластери ще бъдат обсъдени също. Докато в първата лекция целта беше мотивацията, в тази лекция ще наблегнем на теореми и примери.
04.04.2023
Въведение в спектрална теория на графите
Петър Петров,
Институт по математика и информатика – БАН
Резюме. Това е първата лекция от цикъл от 2-3 лекции по алгебрична теория на графите. Тя ще е достъпна за слушатели с минимални знания по линейна алгебра, в това число за специалисти по информатика или биостатистика, както и за студенти. Примери ще демонстрират всяко понятие. Всичко необходимо от теория на графите ще бъде дадено. Упорът е главно върху приложения. Ще бъде разгледан Лапласиана на граф и някои негови свойства, а също за какво може да се използва и как може да се пресмята.
15.11.2022
Zener model with General fractional calculus: Thermodynamical Restrictions
Teodor M. Atanackovic and Stevan Pilipovic,
Serbian Academy of Sciences and Arts and University of Novi Sad, Serbia
Резюме. We study a Zener type model of viscoelastic body within the context of general fractional calculus and derive restrictions on coefficients that follow from the dissipation inequality that is, the entropy inequality under isothermal conditions. We show, for a stress relaxation and a wave propagation, that the restrictions that follow from the entropy inequality are sufficient to guarantee the existence and uniqueness of the solution. We present numerical data related to the solution of a wave equation for several values of parameters.
08.11.2022
Surfaces Associated with Pascal and Catalan Triangles
Leonard DAUS1, Marilena JIANU1 and Adela MIHAI1,2,
1 Technical University of Civil Engineering Bucharest, Romania,
2 Transilvania University of Brasov, Romania
Резюме. An open problem in reliability theory is that of finding all the coefficients of the reliability polynomial associated with particular networks. Because reliability polynomials can be expressed in Bernstein form (hence linked to binomial coefficients), it is clear that an extension of the classical discrete Pascal’s triangle (comprising all the binomial coefficients) to a continuous version (exhibiting infinitely many values in between the binomial coefficients) might be geometrically helpful and revealing [1]. We investigated in [2] some geometric properties of a continuous extension of Pascal’s triangle: Gauss curvature, mean curvature, geodesics and level curves, as well as their symmetries. As a next step [3], we investigate a surface related to one of the Catalan triangles presented in [4].
References:
[1] M. Jianu, L. Daus, M. Nagy, R.M. Beiu, Approximating the level curves on Pascal’s surface, International Journal of Computers, Communications & Control 17(4) (2022), art. 4865.
[2] V. Beiu, L. Daus, M. Jianu, A. Mihai, I. Mihai, On a surface associated with Pascal’s triangle, Symmetry 14(2) (2022), art. 411.
[3] M. Jianu, S. Achimescu, L. Daus, I. Mierlus-Mazilu, A. Mihai, D. Tudor, On a surface associated to Catalan triangle, submitted.
[4] L. Daus, M. Jianu, R.M. Beiu, V. Beiu, A tale of Catalan triangles – counting lattice paths, 9th International Workshop on Soft Computing Applications – SOFA 2020, 27-29 November 2020, Arad, Romania.
Funding: Work supported by the research project SUPREMA UTCB-CDI-2022-008 of the Technical University of Civil Engineering Bucharest.
28.04.2022
Изотропни векторни полета и структури върху комплексни повърхнини
Гео Грънчаров,
Florida International University, USA
Резюме. Върху 4-мерно векторно пространство със скаларно произведение със сигнатура (2,2) два независими вектора с обвивка максимална изотропна (нулева) равнина, определят канонично пара-кватернионно действие. Ние забелязахме, че върху ориентируемо 4-многообразие с подобна псевдо-Риманова метрика, съществуването на две изотропни (нулеви) Килингови полета води до интегруемост на индуцираната структура – наречена пара-хиперкомплексна, а метриката е анти-автодуална. Използвайки класификацията на Кодаира на компактните комплексни повърхнини, можем да опишем топологията на съответното 4-многообразие в компактния случай. В доклада ще бъдат представени примери на подобни структури върху няколко от 4-многообразията и ще бъдат установени ограничения върху компактни комплексни повърхнини с подобна псевдо-Ермитова метрика и едно неанулиращо се нулево Килингово векторно поле. Докладът се базира на съвместни резултати с Й. Давидов и О. Мушкаров.
14.12.2021
Въведение в хомологичната огледална симетрия на проективни равнини с тегла над комплексните числа
Марин Генов,
Институт по математика и информатика, БАН
Резюме. Ще въведем основните понятия и резултати водещи до формулировката на хомологичната огледална симетрия в случая на проективните равнини с тегла над комплексните числа.
19.10.2021
Севджан Хаккъев,
Шуменски университет
Резюме. В този доклад, ще представим някои резултати, свързани с устойчивостта на периодични вълни. В моделите, които ще разгледаме, проблема за устойчивост се свежда до изследването на спектрални задачи от вида

и пресмятането на определени величини, свързани с индекса на устойчивост.
14.09.2021
The Dimension Dind оf Finite Topological T0-Spaces
Dimitrios Georgiou,
University of Patras, Greece
Резюме. A.V. Arhangelskii introduced the dimension Dind [2] and some properties of this dimension have been studied in [1, 3]. In this talk, we present the study of this dimension for finite T0-spaces. Especially, we present that in the realm of finite T0-spaces, Dind is less than or equal to the small inductive dimension ind, the large inductive dimension Ind and the covering dimension dim. We also give the “gaps” between Dind and the dimensions ind, Ind and dim, presenting various examples which shows these “gaps”. Moreover, in this field of spaces, we present characterizations of Dind, inserting the meaning of the maximal family of pairwise disjoint open sets, and give properties of this dimension.
References:[1] Chatyrko V.A., Pasynkov B.A., On sum and product theorems for dimension Dind, Houston J. Math. 28 (2002), no. 1, 119-131.[2] Egorov V., Podstavkin Ju., A definition of dimension, (Russian) Dokl. Akad. Nauk SSSR 178 1968, 774-777.[3] Kulpa W., A note on the dimension Dind, Colloq. Math. 24 (1971/72), 181-183.
The results of this talk are the research work of the paper “THE DIMENSION Dind OF FINITE TOPOLOGICAL T0-SPACES”, the authors of which are D. Georgiou, Y. Hattori, A. Megaritis and F. Sereti. This paper has been accepted for publication to the journal Mathematica Slovaca.
22.06.2021
Обобщени ротационни повърхнини в 4-мерни псевдо-Евклидови пространства
Виктория Бенчева,
Институт по математика и информатика, БАН
Резюме. Ротационните повърхнини са богат източник на примери както в Евклидови така и в псевдо-Евклидови пространства. В доклада разглеждаме т. нар. обобщени ротационни повърхнини от елиптичен и хиперболичен тип в 4-мерно пространство на Минковски и в 4-мерно псевдо-Евклидово пространство с неутрална метрика, които са аналог на дефинираните от C. Moore обобщени ротационни повърхнини в Евклидовото пространство R4. Oписваме аналитично някои техни подкласове: минимални, плоски, с плоска нормална свързаност, с паралелен нормиран вектор на средната кривина.
18.05.2021
Формални околности в пространства от дъги
Петър Петров
Институт по математика и информатика, БАН
Резюме: След като въведем пространството от дъги на едно многообразие, ще дефинираме формалната околност на точка. Така ще можем да формулираме резултата на Дринфелд-Гринберг-Каждан, който дава представяне на формалната околност на неизродена дъга. Накрая ще се спрем на някои възможни обобщения.
20.04.2021
Алгоритъм на Висковатов за полиноми на Ермит-Паде
Николай Икономов
Институт по математика и информатика, БАН
Резюме. Припомняме класическия алгоритъм на Висковатов, който може да бъде приложен само за един степенен ред, и той се използва за изчисление на класическа апроксимация на Паде. Ние имаме нужда от изчисление на класическа апроксимация на Ермит-Паде (два степенни реда), и вече сме я изчислили чрез матричен метод. Разглеждаме това ново разширение на алгоритъма на Висковатов за много по-бързо изчисление на апроксимация на Ермит-Паде, като правим сравнение с матричния метод.
Лекцията е основана на https://arxiv.org/abs/2007.03370
Това е съвместна работа със Сергей Суетин, МИАН-РАН.
