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Introduction

Lund-Regge problem:
Find a minimal number of functions, satisfying some natural conditions,
that determine the surface up to a motion in a pseudo-Euclidean space.

[Lund F., Regge T., Unified approach to strings and vortices with soliton
solutions. Phys. Rev. D, 14, no. 6 (1976), 1524–1536]

The problem is solved for:
Zero mean curvature surfaces of co-dimension two in E4, E4

1, and E4
2;

Surfaces with parallel normalized mean curvature vector field in E4,
E4

1, and E4
2.
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Surfaces with zero mean curvature in E4
1

Aĺias and Palmer [Math. Proc. Cambridge Philos. Soc., 1998]

Spacelike surfaces with zero mean curvature in E4
1 are described by the

following system of partial differential equations

(K 2 + κ2)
1
4 ∆ ln(K 2 + κ2) = 8K

(K 2 + κ2)
1
4 ∆arctan

κ
K

= 2κ

where K and κ are the Gauss curvature and the normal curvature,
respectively.
Conversely, any solution (K , κ) to this system determines a unique (up to a
rigid motion in E4

1) spacelike surface with zero mean curvature whose Gauss
curvature and normal curvature are the functions K and κ, respectively.

Величка Милушева (ИМИ-БАН) Отчетна сесия’2025 3 / 19



Surfaces with zero mean curvature in E4
1

G. Ganchev, V.M. [Israel J. Math., 2013]
The Gauss curvature K and the normal curvature κ of any timelike
surface with zero mean curvature in E4

1 satisfy the following system of
natural partial differential equations

(K 2 + κ2)
1
4 ∆h ln(K 2 + κ2) = 8K

(K 2 + κ2)
1
4 ∆h arctan

κ
K

= 2κ

where ∆h denotes the hyperbolic Laplace operator ∆h = ∂2

∂u2 − ∂2

∂v2 .
Conversely, any solution (K , κ) to the above system, determines a unique
(up to a rigid motion in E4

1) timelike surface with zero mean curvature such
that K is the Gauss curvature and κ is the normal curvature of the surface.
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Surfaces with zero mean curvature in E4
2

Sakaki M. [Tsukuba J. Math., 2011]
Spacelike surfaces with zero mean curvature (maximal spacelike
surfaces) in E4

2 are characterized by the following system of partial
differential equations:

(K 2 − κ2)
1
4 ∆ ln(K 2 − κ2) = 8K

(K 2 − κ2)
1
4 ∆ ln

K − κ
K + κ

= −4κ
K 2 − κ2 > 0.

The Gauss curvature K and the normal curvature κ of any maximal
spacelike surface in E4

2 satisfy the condition

K 2 − κ2 ≥ 0.

The equality case is the analogue of the super-conformal minimal surfaces
in the Euclidean space E4.
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Surfaces with zero mean curvature in E4
2

Y. Aleksieva, V.M. [J. Geom. Phys., 2019]
The Gauss curvature K and the normal curvature κ (expressed in terms of
the canonical isothermal coordinates) of any minimal Lorentz surface in
E4

2 satisfy the following system of natural partial differential equations:∣∣K 2 − κ2
∣∣ 1

4 ∆h ln
∣∣K 2 − κ2

∣∣ = 8K∣∣K 2 − κ2
∣∣ 1

4 ∆h ln

∣∣∣∣K + κ
K − κ

∣∣∣∣ = 4κ
K 2 − κ2 ̸= 0. (1)

Conversely, any solution (K ,κ) to this system determines a unique (up to a
rigid motion in E4

2) minimal Lorentz surface of general type with Gauss
curvature K and normal curvature κ and such that the given parameters
are canonical.
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Surfaces with parallel normalized mean curvature vector field

Definition 1
A surface is said to have parallel mean curvature vector field if its mean
curvature vector H is parallel with respect to the normal connection.

Definition 2
A submanifold in a Riemannian manifold is said to have parallel
normalized mean curvature vector field if the mean curvature vector is
non-zero and the unit vector in the direction of the mean curvature vector
is parallel in the normal bundle [B.-Y. Chen, Monatsh. Math., 1980].

Every analytic surface with parallel normalized mean curvature vector
in the Euclidean m-space Rm must either lie in a 4-dimensional space
R4 or in a hypersphere of Rm as a minimal surface [B.-Y. Chen,
Monatshefte für Mathematik 1980].
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Surfaces with parallel normalized mean curvature vector field

G. Ganchev, V.M. [Filomat; 2019]
Each spacelike surface with parallel normalized mean curvature
vector field in R4

1 is determined up to a motion by three functions λ(u, v),
µ(u, v) and ν(u, v) satisfying the following system of partial differential
equations

νu = λv − λ(ln |µ|)v ;

νv = λu − λ(ln |µ|)u;

ε(ν2 − λ2 + µ2) = 1
2 |µ|∆ ln |µ|,

where ε = 1 corresponds to the case the mean curvature vector field is
spacelike, and ε = −1 corresponds to the case the mean curvature vector
field is timelike.
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Surfaces with parallel normalized mean curvature vector field

Fundamental Theorem 1 [V. Bencheva, V.M., Turkish J. Math., 2024]
Let λ(u, v), µ(u, v) and ν(u, v) be smooth functions, µ ̸= 0, ν ̸= const, defined
in a domain D, D ⊂ R2, and satisfying the conditions

νu + λv = λ(ln |µ|)v ;

λu − ενv = λ(ln |µ|)u;

|µ| (ln |µ|)uv = −ν2 − ε(λ2 + µ2),

(2)

where ε = ±1. If {x0, y0, (n1)0, (n2)0} is a pseudo-orthonormal frame at a point
p0 ∈ R4

1, then there exists a subdomain D0 ⊂ D and a unique timelike surface
M : z = z(u, v), (u, v) ∈ D0 with parallel normalized mean curvature vector
field, such that M passes through p0, {x0, y0, (n1)0, (n2)0} is the geometric
frame of M at the point p0, the functions λ(u, v), µ(u, v), ν(u, v) are the
geometric functions of the surface, and K − H2 > 0 in the case ε = 1, resp.
K − H2 < 0 in the case ε = −1. Furthermore, (u, v) are canonical isotropic
parameters of M.
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Surfaces with parallel normalized mean curvature vector field

Fundamental Theorem 2 [V. Bencheva, V.M., Turkish J. Math., 2024]
Let λ(u, v), µ(u, v) and ν(u) be smooth functions, µ ̸= 0, ν ̸= const,
defined in a domain D, D ⊂ R2, and satisfying the conditions

νu + λv = λ(ln |µ|)v ;

|µ| (ln |µ|)uv = −ν2.
(3)

If {x0, y0, (n1)0, (n2)0} is a pseudo-orthonormal frame at a point p0 ∈ R4
1,

then there exists a subdomain D0 ⊂ D and a unique timelike surface
M : z = z(u, v), (u, v) ∈ D0 with parallel normalized mean curvature
vector field, such that M passes through p0, {x0, y0, (n1)0, (n2)0} is the
geometric frame of M at the point p0, the functions λ(u, v), µ(u, v), ν(u)
are the geometric functions of the surface, and K − H2 = 0. Furthermore,
(u, v) are canonical isotropic parameters of M.
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Question

Question 1
How to introduce canonical parameters and obtain natural equations for
other classes of surfaces, different from the minimal ones and from the
PNMCVF-surfaces?

Question 2
Can we solve the Lund-Regge problem for other classes of surfaces,
different from the minimal ones and from the PNMCVF-surfaces?

We solve this problem for the class of marginally trapped surfaces in the
Minkowski 4-space E4

1.

Величка Милушева (ИМИ-БАН) Отчетна сесия’2025 11 / 19



Marginally trapped surfaces in the Minkowski 4-space

Theorem 1 [G. Ganchev, V.M., J. Math. Phys. 2012]
Let γ1, γ2, ν, λ, µ, β1, β2 be smooth functions, defined in a domain
D, D ⊂ R2, and satisfying the conditions

µu
µ(2 γ2 + β1)

> 0;
µv

µ(2 γ1 + β2)
> 0;

−γ1
√
E
√
G = (

√
E )v ; −γ2

√
E
√
G = (

√
G )u;

2λµ =
1√
E
(γ2)u +

1√
G

(γ1)v −
(
(γ1)

2 + (γ2)
2);

2λ γ2 − 2ν γ1 − λβ1 + (1 + ν)β2 =
1√
E
λu −

1√
G
νv ;

2λ γ1 + 2ν γ2 + (1 − ν)β1 − λβ2 =
1√
E
νu +

1√
G
λv ;

γ1 β1 − γ2 β2 + 2ν µ = − 1√
E
(β2)u +

1√
G

(β1)v ,
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Marginally trapped surfaces in the Minkowski 4-space

where
√
E =

µu
µ(2 γ2 + β1)

,
√
G =

µv
µ(2 γ1 + β2)

.

Let {x0, y0, (n1)0, (n2)0} be vectors at a point p0 ∈ R4
1, such that x0, y0

are unit spacelike vectors, ⟨x0, y0⟩ = 0, (n1)0, (n2)0 are lightlike vectors,
and ⟨(n1)0, (n2)0⟩ = −1. Then there exist a subdomain D0 ⊂ D and a
unique marginally trapped surface M2 : z = z(u, v), (u, v) ∈ D0 free of
flat points, such that M2 passes through p0, the functions
γ1, γ2, ν, λ, µ, β1, β2 are the geometric functions of M2 and
{x0, y0, (n1)0, (n2)0} is the geometric frame of M2 at the point p0.
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Marginally trapped surfaces in the Minkowski 4-space

Theorem 2 [M. Maksimovic, V.M., 2025]
Let ν(u, v), λ(u, v), and µ(u, v) (µ ̸= 0) be smooth functions defined in a
domain D ⊂ R2 and ϕi (u, v), i = 1, 2, 3, 4 be defined by (5). Let φ(u, v),
ψ(u, v) be a solution to the Cauchy problem

φv = ϕ1φ+ ϕ2ψ;

ψu = ϕ3φ+ ϕ4ψ;
φ(u, v0) = g1(u); ψ(u0, v) = g2(v),

where g1(u) and g2(v) are defined by (6), and let the following equations
also hold

2λµ = − 1
φψ

((
φv

ψ

)
v

+

(
ψu

φ

)
u

)
;

2νµ =
2
φψ

((
ψu

ψ

)
v

−
(
φv

φ

)
u

)
.

(4)

Then, there exists a unique (up to a position in R4
1) marginally trapped

surface free of flat points parametrized by canonical principal parameters
(u, v) with geometric functions ν(u, v), λ(u, v), and µ(u, v).
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Marginally trapped surfaces in the Minkowski 4-space

ϕ1=−µ(λ
2 + ν2 − ν)v + (2(λ2 + ν2) + ν − 1)µv

2µ(4ν2 + 4λ2 − 1)
;

ϕ2=
2µ(λuν − λνu) + λµu − λuµ

2µ(4ν2 + 4λ2 − 1)
;

ϕ3=
2µ(λνv − λvν) + λµv − λvµ

2µ(4ν2 + 4λ2 − 1)
;

ϕ4=−µ(λ
2 + ν2 + ν)u + (2(λ2 + ν2)− ν − 1)µu

2µ(4ν2 + 4λ2 − 1)
.

(5)

g1(u) = e

∫ u

u0

(cϕ3 + ϕ4) (u, v0)du − c1
,

g2(v) = e

∫ v

v0

(
ϕ1 +

1
c
ϕ2

)
(u0, v)dv − c2

.

(6)
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Marginally trapped surfaces in the Minkowski 4-space

Lemma
If (u, v) and (ū, v̄) are two pairs of canonical principal parameters in a
neighbourhood of a point p, then the following relations hold

ū = ±u + u0; v̄ = ±v + v0,

or
ū = ±v + v0; v̄ = ±u + u0 .
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Thank you for your attention!
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