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We consider the Benjamin equation

ut − uxxx − γDux + 2uux = 0 (1)

where D = H∂x , where H is the Hilbert transform.
The Hilbert transform is defined via the convolution with
the distribution 1

x , i.e. Hf = 1
x ∗ f or equivalently

Hf (x) =
1
π

∫ +∞

−∞

f (x − y)
y

dy .
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let u(t , x) = ϕ(x + ct), with ϕ vanishing at both ±∞.
the profile equation

− ϕ′′ − γDϕ+ cϕ+ ϕ2 = 0. (2)

A rescaling transformation like ϕ → −γ
2ϕ(

γ
2 ·) will transform

the problem into an equivalent one

− ϕ′′ − 2Dϕ+ 4cγ−2ϕ− ϕ2 = 0. (3)
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one should expect solutions to exists only if the dispersion
relation, ξ2 − 2|ξ|+ 4cγ−2 > 0 for all values of ξ. This
implies that 4cγ−2 > 1 or c > γ2

4 .
we consider an equivalent version of the problem (3)

− ϕ′′ − 2Dϕ+ (ω + 1)ϕ− ϕ2 = 0. (4)

Note that due to the fact D2 = H2∂2
x = −∂2

x , we can
equivalently rewrite in the more convenient form

(D − 1)2ϕ+ ωϕ− ϕ2 = 0. (5)

where ω = 4cγ−2 − 1
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We start with a simple interpolation inequality.

Lemma

Let p = 3,4,5,6. Then, for every α > 0, there exists Cα,p, so
that∫ ∞

−∞
up(x)dx ≤ Cα,p∥u∥p−2

(
∥(D − 1)u∥2 + α∥u∥2

)
. (6)

Moreover, for 2 < p ≤ 6 and any α > 0, there exists Dα,p, so
that∫ ∞

−∞
|u(x)|pdx ≤ Dα,p∥u∥p−2

(
∥(D − 1)u∥2 + α∥u∥2

)
. (7)
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Compensated compactness

Theorem

Let ρn : R → R, ρn ≥ 0,
∫∞
−∞ ρn(x)dx = λ. Then, there exists a

subsequence ρnk , so that one of the following is true:
(Compactness/tightness) there exists a sequence yk ∈ R, so
that for every ϵ > 0, there exists R > 0, and k0, so that for all
k ≥ k0, ∫ yk+R

yk−R
ρnk (x)dx ≥ λ− ϵ.

(Vanishing) For all R < ∞,

lim
k→∞

sup
y∈R

∫ y+R

y−R
ρnk (x)dx = 0.
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(Dichotomy) There exists µ ∈ (0, λ), so that for all ϵ > 0,
there exists yk ∈ R and ρk ,+, ρk ,− ∈ L1

+(R), so that for all k
large enough, ρnk (x + yk ) = ρk ,+(x) + ρk ,−(x) + ek and

supp(ρk ,−) ⊂ (−∞,−Rk ), supp(ρk ,+) ⊂ (Rk ,+∞),
limk Rk = ∞
|
∫ +∞

Rk
ρk ,+(x)dx − µ| < ϵ, |

∫ −Rk
−∞ ρk ,−(x)dx − (λ− µ)| < ϵ,∫

|ek (x)|dx < ϵ.
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We consider the inequality (6) for the case p = 3 and arbitrary
α > 0, ∫ ∞

−∞
u3(x)dx ≤ Cα∥u∥

(
∥(D − 1)u∥2 + α∥u∥2

)
. (8)

Here we take the value Cα to be the exact constant in (8). In
other words,

Cα = sup
u ̸=0

Iα[u]

Iα[u] =

∫∞
−∞ u3(x)dx

∥u∥
(
∥(D − 1)u∥2 + α∥u∥2

) .
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It is obviously not at all clear that a maximizer exists. This is the
subject of the following proposition.
For each α > 0, there exists a maximizer for (8). That is, there
exists a function φ ∈ H1(R), so that

Cα =

∫∞
−∞ φ3(x)dx

∥φ∥
(
∥(D − 1)φ∥2 + α∥φ∥2

) .
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Thank you for Attention
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