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Index counting theories for Hamiltonian system

@ We consider the Benjamin equation

Ut — Uxxx — yDux +2uuy =0 (1)
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@ We consider the Benjamin equation
Ut — Uxxx — yDuyx + 2uux =0 (1)

@ where D = HOy, where H is the Hilbert transform.
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Index counting theories for Hamiltonian system

@ We consider the Benjamin equation
Ut — Uxxx — yDuyx + 2uux =0 (1)

@ where D = HOy, where H is the Hilbert transform.

@ The Hilbert transform is defined via the convolution with
the distribution 1, i.e. Hf = 1 « f or equivalently

Hi(x) = 1 / XY g,

T J-o0 y
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Index counting theories for Hamiltonian system

@ let u(t, x) = ¢(x + ct), with ¢ vanishing at both +oc.
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Index counting theories for Hamiltonian system

@ let u(t, x) = ¢(x + ct), with ¢ vanishing at both +oc.
@ the profile equation

—¢" —yD¢ + cp + ¢* = 0. )
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Index counting theories for Hamiltonian system

@ let u(t, x) = ¢(x + ct), with ¢ vanishing at both +oc.
@ the profile equation

—¢" —yD¢ + cp + ¢* = 0. )

@ Arescaling transformation like ¢ — —3¢(3-) will transform
the problem into an equivalent one

— ¢ —2D¢ + 4cy%p — ¢? = 0. (3)
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Index counting theories for Hamiltonian system

@ one should expect solutions to exists only if the dispersion
relation, £2 — 2|¢| 4 4cy~2 > 0 for all values of &. This

implies that 4cy~2 > 1 orc > %.
we consider an equivalent version of the problem (3)

— ¢ —2D¢p + (w+1)p — ¢? = 0. (4)

Note that due to the fact D? = H202 = —92, we can
equivalently rewrite in the more convenient form

(D—1)2¢ +wp—¢* =0. (5)

where w = 4¢cy~2 — 1
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Existence of solitary waves

@ We start with a simple interpolation inequality.
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@ We start with a simple interpolation inequality.

Letp =3,4,5,6. Then, for every a > 0, there exists C, p, SO
that

| Pk < CaglulP (10 - 1ulP + allul) . (6)

Moreover, for2 < p < 6 and any a > 0, there exists D, p, SO
that

| 1P < Daglull 2 (10 - ul? +alul?). ()

—00
<
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@ Compensated compactness

Letpn: R — R, pp >0, [*_pn(x)dx = \. Then, there exists a
subsequence pp, , so that one of the following is true:
(Compactness/tightness) there exists a sequence yy € R, so
that for every e > 0, there exists R > 0, and ky, so that for all
k > ko,

Yk+R
/ P (X)dx > X —e.
Y«—R

(Vanishing) For all R < oo,

y+R
lim sup/ pn(x)dx = 0.
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@ (Dichotomy) There exists 1 € (0, A), so that for all e > 0,
there exists yx € R and px , px— € L1 (R), so that for all k
large enough, pn, (X + k) = pr.1 (X) + pk.— (X) + & and

supp(pk,—) C (—oo, —Rk), supp(pk,+) C (Rk, +00),

limg Rk = o0

| f,q+k°° pr (X)dx — p| < & [ p_(x)dx — (A — )| < e,
f |ek ‘dX < €.
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We consider the inequality (6) for the case p = 3 and arbitrary
a >0,

| eRd < Calull (10— Dl + alul?) . @)

—00

Here we take the value C, to be the exact constant in (8). In
other words,
Co = sup /a[u]
u#£0
[0, ud(x)dx
lull (I(D = 1)ul® + allul?)

Iu] =

Existence of solitary wave solution for the Benjamin equation



Existence of solitary waves

It is obviously not at all clear that a maximizer exists. This is the

subject of the following proposition.
For each a > 0, there exists a maximizer for (8). That is, there

exists a function » € H'(R), so that

B [, P (x)dx
BEN(CEDEETERE

Ca
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Thank you for Attention
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