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Simplest fractional differential equation

CD
α
t - Caputo fractional derivative:

CD
α

t = Jn−αt

dn

dtn
, n− 1 < α ≤ n, n ∈ N,

where Jβt - Riemann-Liouville fractional integral(
Jβt f

)
(t) =

1

Γ(β)

∫ t

0

(t− τ)β−1f(τ) dτ, β > 0; J0
t = I.

Fractional relaxation-oscillation equation

CD
α

t u(t) + λu(t) = 0, 0 < α ≤ 2, λ > 0, t > 0;

u(0) = 1 (and u′(0) = 0 if α > 1).

Solution: u(t) = Eα(−λtα), where

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
− Mittag-Leffler function
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Two-parameter Mittag-Leffler function

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, Eα(z) = Eα,1(z)

Asymptotic expansion:

Eα,β(−t) =
t−1

Γ(β − α)
− t−2

Γ(β − 2α)
+O(t−3), α ∈ (0, 2), β ∈ R, t→ +∞.

Estimate:

|Eα,β(−t)| ≤ C

1 + t
, t ≥ 0.

Complete monotonicity:

A function f : (0,∞)→ R is called completely monotone function (CMF) if

(−1)nf (n)(t) ≥ 0, for all t > 0, n = 0, 1, ...

The simplest example: E1(−t) = e−t ∈ CMF
Eα(−t) ∈ CMF iff 0 < α ≤ 1 (Pollard, 1948)
Eα,β(−t) ∈ CMF iff 0 ≤ α ≤ 1, α ≤ β.
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Multinomial Mittag-Leffler function

E(µ1,...,µm),β(z1, . . . , zm) :=

∞∑
k=0

∑
k1+···+km=k

k!

k1! · · · km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1αjkj

),
where zj ∈ C, µj > 0, β ∈ R, j = 1, ...,m.

Multinomial Mittag-Leffler type functions in the form

E(µ1,...,µm),β(t; a1, . . . , am) := tβ−1E(µ1,...,µm),β(−a1tµ1, . . . ,−amtµm).

appear in the solution of differential equations with multiple fractional derivatives.
This is due to the Laplace transform identity:

∫ t

0

e−stE(µ1,...,µm),β(t; a1, . . . , am) dt =
s−β

1 +
∑m
j=1 ajs

−µj
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Multi-term fractional relaxation equation

CDα
t y(t) +

m∑
j=1

bj
CD

αj
t y(t) + λy(t) = f(t), t > 0, y(0) = 1,

where 1 ≥ α > αj > 0, bj > 0, j = 1, ...,m, λ > 0.

Solution:

y(t) = G1(t) +

∫ t

0

G(t− τ)f(τ) dτ,

where

G1(t) = 1− λE(α,α−α1,...,α−αm),α+1 (t;λ, b1, . . . , bm) ,

G(t) = E(α,α−α1,...,α−αm),α (t;λ, b1, . . . , bm) .

The functions G1(t), G(t) are completely monotone as in the single-term case.
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Generalizations of Prabhakar type
Three-parameter Mittag-Leffler function (Prabhakar function):

Eδα,β(z) =

∞∑
k=0

(δ)k
k!

zk

Γ(β + αk)
, z ∈ C, α, β, δ ∈ R, α > 0, (1)

where (δ)k is the Pochhammer symbol

(δ)k =
Γ(δ + k)

Γ(δ)
= δ(δ + 1) . . . (δ + k − 1), k ∈ N; (δ)0 = 1.

The function tβ−1Eδα,β(−tα), t ≥ 0, is completely monotone provided

0 < α ≤ 1, 0 < αδ ≤ β ≤ 1. (2)

Asymptotic behavior: Eδα,β(−tα) ∼


t−αδ

Γ(β − αδ)
, αδ 6= β,

−δt
−αδ−α

Γ(−α)
, αδ = β.

, t→ +∞,
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Multinomial generalization of Prabhakar type

Eδ(µ1,...,µm),β(z1, . . . , zm) :=

∞∑
k=0

∑
k1+···+km=k

(δ)k
k1! · · · km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1 µjkj

),
where where zj ∈ C, µj, β, δ ∈ R, µj > 0, j = 1, . . . ,m.

Naturally emerging function in the study of IBVPs for multi-term time-fractional
equations with non-local boundary conditions.

Spectral expansion of the solution in case of two-dimensional eigenspaces:

u(x, t) = u1,0(t)Φ1,0(x) +

∞∑
n=1

{u1,n(t)ϕ1,n(x)+u2,n(t)ϕ2,n(x)}

ϕ1,n(x) - eigenfunctions, ϕ2,n(x) - associated eigenfunctions (due to non-locality)
u1,n(t) - solutions of relaxation equation, represented in terms of multinomial
Mittag-Leffler functions
u2,n(t) contains convolutions of multinomial Mittag-Leffler type functions.
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Multinomial Mittag-Leffler type function of Prabhakar type
Class of functions, closed under convolution:

Eδ~µ,β(t;~a) := tβ−1Eδ(µ1,...,µm),β(−a1tµ1, . . . ,−amtµm)

Convolution property:
∫ t
0
Eδ~µ,β(t− τ ;~a)Eδ0~µ,β0(τ ;~a) dt = Eδ+δ0~µ,β+β0

(t;~a).

Laplace transform:∫ t

0

e−stEδ~µ,β(t;~a) dt =
s−β(

1 +
∑m
j=1 ajs

−µj
)δ

Complete monotonicity: Let µj, aj > 0, j = 1, . . . ,m, and

µ1 ≤ 1, 0 < µ1δ ≤ β ≤ 1,

where µ1 = max{µj}mj=1. Then

Eδ~µ,β(t;~a) ∈ CMF , t > 0.
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A nonlocal BVP for the general time-fractional diffusion equation

CD(ζ)
t u(x, t) =

∂2u

∂x2
(x, t), x ∈ (0, 1), t > 0,

u(x, 0) = f(x),

u(0, t) = 0, Φx{u(x, t)} = 0,

where CD(ζ)
t is a general fractional derivative in time with kernel ζ(t) and Φx is a

continuous linear functional in C1[0, 1].

Pλn - spectral projection operators in the (multidimensional) eigenspaces, defined
by the spectral problem

y′′ + λ2y = 0, y(0) = 0, Φ{y} = 0.

The spectral expansion

f(x) ∼
∞∑
n=0

Pλnf

has the uniqueness property iff 1 ∈ supp Φ (N. Bozhinov, 1990).
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Aim: to construct solution u(x, t) in the form of spectral expansion

u(x, t) =

∞∑
n=0

Pλnu, Pλnu =

κn−1∑
k=0

An,k(t)ϕn,k(x) (3)

where κn - multiplicity of eigenvalue λn, ϕn,k(x) - generalized eigenfunctions,
An,k(t) - represented in terms of functions G(t) and Gj(t), j = 1, ..., κn − 1,
defined as

Ĝ1(s;λ) =
g(s)

s(g(s) + λ)
, Ĝ(s;λ) =

1

g(s) + λ
, g(s) = sζ̂(s),

Gj+1(t;λ) =

∫ t

0

G(τ ;λ)Gj(t− τ ;λ) dτ, j ∈ N.

Example: If CD(ζ)
t = CD

α
t then

G1(t;λ) = Eα(−λtα), G(t;λ) = tα−1Eα,α(−λtα),

Gj+1(t;λ) = tαjEj+1
α,αj+1(−λt

α), j ∈ N.

Annual scientific session ”Analysis, Geometry and Topology”, December 16, 2025 p. 10/15



Example: If CD(ζ)
t = CDα

t +
∑m
j=1 bj

CD
αj
t then

G1(t;λ) = 1− λE(α,α−α1,...,α−αm),α+1 (t;λ, b1, . . . , bm) ,

G(t;λ) = E(α,α−α1,...,α−αm),α (t;λ, b1, . . . , bm) ,

Gj+1(t;λ) = Ej(α,α−α1,...,α−αm),αj+1 (t;λ, b1, . . . , bm)

− λEj+1
(α,α−α1,...,α−αm),α(j+1)+1 (t;λ, b1, . . . , bm) , j ∈ N.

To prove convergence of the series (3), estimates for An,k(t) (resp. Gj(t;λ)) are
derived in the general case.

Theorem. For any λ > 0 the functions Gj(t;λ), j ∈ N, are positive and continuous
in t ∈ [0,∞) and satisfy the following estimates:

λj−1Gj(t;λ) ≤ 1, t ≥ 0, (4)

λjGj(t;λ) ≤ Cε, t ≥ ε > 0, (5)

where the constant Cε > 0 does not depend on t or λ.
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Application: adsorption-desorption at anomalous diffusion

K−C−(x = 0−, t) = K+C+(x = 0+, t) = f(G(t))

Desorption
interface → bulk
∼ −J−(x = 0−, t)

Adsorption
bulk → interface
∼ J+(x = 0+, t)

C+(x → ∞, t) = C+(x, t = 0) = C+
e

C−(x → −∞, t) = C−(x, t = 0) = C−

e

C±(x, t)

Phase 1 (x > 0);
Diffusion C+

t (x, t) = −∇ · J+(x, t)

Phase 2 (x < 0);
Diffusion C−

t (x, t) = −∇ · J−(x, t)

C+(x, t)

0
x

C−(x, t)

Interface x = 0
concentration G(t)

J−(x, t) = −dβD
1−β
t ∇C−(x, t)

J+(x, t) = −dαD
1−α
t ∇C+(x, t)
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Two time-fractional equations for anomalous diffusion of surfactant:

CD
α

t C
+(x, t) = dα

∂2C+(x, t)

∂x2
, x > 0; CD

β

tC
−(x, t) = dβ

∂2C−(x, t)

∂x2
, x < 0,

where 0 < α, β ≤ 1, dα, dβ - diffusion coefficients. Initial and boundary conditions:

C+(x, 0) = C+
e , x > 0; C−(x, 0) = C−e , x < 0;

lim
x→±∞

C±(x, t) = C±e , lim
x→0±

C±(x, t) = C±s (t), t > 0,

where C±s (t) - subsurface surfactant concentrations, C±e - input concentrations of
surfactant in the bulk phases.
G(t) - surfactant concentration on the interface:

dG(t)

dt
= dαD

1−α
t

∂C+(x, t)

∂x

∣∣∣∣
x=0+

−dβD1−β
t

∂C−(x, t)

∂x

∣∣∣∣
x=0−

, t > 0; G(0) = G0.

ODE for G(t):

dG(t)

dt
+ dαD

1−α/2
t C+

s (t) + dβD
1−β/2
t C−s (t) = dαC

+
e

tα/2−1

Γ(α/2)
+ dβC

−
e

tβ/2−1

Γ(β/2)
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The subsurface surfactant concentrations C±s (t) are related with G(t) via the
adsorption isotherm f(G): K−C−s (t) = K+C+

s (t) = f(G(t))

In the simplest case f(G) = const.G the equation for G(t) is

dG(t)

dt
+ aD

1−α/2
t G(t) + bD

1−β/2
t G(t) = a1

tα/2−1

Γ(α/2)
+ b1

tβ/2−1

Γ(β/2)
, G(0) = G0

=⇒ G(t) = G0E(α/2,β/2),1

(
−atα/2,−btβ/2

)
+ a1t

α/2E(α/2,β/2),α/2+1

(
−atα/2,−btβ/2

)
+ b1t

β/2E(α/2,β/2),β/2+1

(
−atα/2,−btβ/2

)
.

This solution serves as an approximation for the nonlinear cases.

I. Bazhlekov, E. Bazhlekova (2025) Adsorption-desorption at anomalous diffusion: Fractional calculus approach, Fractal

Fract., 9 (7), 408.

I. Bazhlekov, E. Bazhlekova (2025) Fractional calculus approach to models of adsorption: Barrier-diffusion control,

arXiv preprint.
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