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Einstein’s gravity in the vacuum

Consider Riemannian manifold (M, g).

i) ∇g - Levi-Civita connection of the metric g ;

ii) The curvature Rg = [∇g ,∇g ]−∇g
[,]

;

iii) The Ricci tensor Ricg =
∑

Rg(X , ei , ei ,Y );

iv) The scalar curvature Scalg = trgRicg =
∑

Ricg(ei , ei ).

It is well known that the equations of motion of the Einstein’s general theory of gravitation are the
Euler-Lagrange equations of the Einstein-Hilbert action

S =

∫
Scalgvol.

The Euler-Lagrange equations of the Einstein-Hilbert action are the well known equations:

Ricg = 0.

Incorporating the wave nature of the particals one considers also the preserving supersymmetry
equations of the form

∇gϵ = 0;

where ϵ is a non-zero spinor.
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Basic fact: The equations of motion are (geometrical) consequence of the supersymmetry
equation:

1 The existence of a parallel spinor forces the holonomy group of ∇g to be contained in a group
which is a stabilizer of a spinor. Pure algebraically, these groups are known to be
SU(n),Sp(n),G2,Spin(7).

2 The compact manifold solving the supersimmetry equations are:

• Hol(∇g) ⊂ SU(n) - Clabi-Yau spaces, Ricci flat Kaehler.

• Hol(∇g) ⊂ Sp(n) - hyperKaehler spaces:

• Hol(∇g) ⊂ G2, dim = 7 - Joice spaces;

• Hol(∇g) ⊂ Spin(7), dim = 8 - Joice spaces.

In all these cases the Ricci tensor vanishes authomatically, Ricg = 0 and solves the Einstein
equations of motion.

The Einstein equations of motion
Ricg = 0 (1)

are highly non-linear PDE’s and constructing compact solutions is extremelly difficult.
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In even dimensions the Einstein equation (1) reduces the problem to:

1 First: To the compact Kaehler manifold with holomorphically trivial first Chern class, i.e.
Kaehler space with non-zero holomorphic volume form.

2 Second. The holomorphic volume form has to be parallel with respect to the Levi-Civita
connection.

3 The first condition is topological and there are many compact examples.

4 The second condition becomes a consequence of the first due to the Yau’s fundamental result
solving the Calabi’s conjecture.

5 From this point of view, the Yau’s theorem can be stated in a more “physical way”:

Theorem (Yau’77)
A compact complex manifold with holomorphically trivial first Chern class admitting a Kaehler
metric admits a solution to supersymmetric Einstein equation (1).

One possible theory generalizing the Einstein general relativity incorporating additional forces is
the so called heterotic string theory.
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Heterotic supergravity

The bosonic fields of the ten-dimensional supergravity which arises as low energy effective theory
of the heterotic string are:

i) the spacetime metric g;
ii) the NS three-form field strength (flux) H;
iii) the dilaton ϕ;
iv) the gauge connection A with curvature 2-form F A.

The bosonic geometry is of the form R1,9−d × Md .

The bosonic fields are non-trivial only on Md , d ≤ 8.

The two torsion connections ∇± = ∇g ± 1
2 H, ∇g is the Levi-Civita connection of the

Riemannian metric g.

Both connections preserve the metric, ∇±g = 0 and have totally skew-symmetric torsion
±H, respectively.

An unknown connection ∇ on the tangent bundle.

Rg ,R±,R - the corresponding curvatures.
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The action and equations of motion

The bosonic part of the ten-dimensional supergravity action in the string frame is

S =

∫
e−2ϕ

[
Scalg + 4(∇gϕ)2 −

1
2
|H|2 −

α′

4

(
Tr |F A|2)− Tr |R|2

)]
vol.

The string frame field equations (the equations of motion) are;

Ricg
ij −

1
4

HimnHmn
j + 2∇g

i ∇
g
j ϕ−

α′

4

[
(F A)imab(F A)mab

j − RimnqRmnq
j

]
= 0,

∇g
i (e

−2ϕH i
jk ) = 0, ∇+

i (e−2ϕ(F A)i
j ) = 0.

(2)

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi
identity receives an α′ correction of the form

dH =
α′

4
8π2(p1(Md )− p1(E)) =

α′

4

(
Tr(R ∧ R)− Tr(F A ∧ F A)

)
, (3)

where p1(Md ) and p1(E) are the first Pontrjagin forms of Md with respect to a connection ∇
with curvature R and the vector bundle E with connection A;

This is a kind of a generalization of the Einstein-Hilbert gravity action in the vacuum

S =

∫ [
Scalg

]
vol and equations of motion Ric = 0.

(Institute) 6 / 11



The action and equations of motion

The bosonic part of the ten-dimensional supergravity action in the string frame is

S =

∫
e−2ϕ

[
Scalg + 4(∇gϕ)2 −

1
2
|H|2 −

α′

4

(
Tr |F A|2)− Tr |R|2

)]
vol.

The string frame field equations (the equations of motion) are;

Ricg
ij −

1
4

HimnHmn
j + 2∇g

i ∇
g
j ϕ−

α′

4

[
(F A)imab(F A)mab

j − RimnqRmnq
j

]
= 0,

∇g
i (e

−2ϕH i
jk ) = 0, ∇+

i (e−2ϕ(F A)i
j ) = 0.

(2)

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi
identity receives an α′ correction of the form

dH =
α′

4
8π2(p1(Md )− p1(E)) =

α′

4

(
Tr(R ∧ R)− Tr(F A ∧ F A)

)
, (3)

where p1(Md ) and p1(E) are the first Pontrjagin forms of Md with respect to a connection ∇
with curvature R and the vector bundle E with connection A;

This is a kind of a generalization of the Einstein-Hilbert gravity action in the vacuum

S =

∫ [
Scalg

]
vol and equations of motion Ric = 0.

(Institute) 6 / 11



The action and equations of motion

The bosonic part of the ten-dimensional supergravity action in the string frame is

S =

∫
e−2ϕ

[
Scalg + 4(∇gϕ)2 −

1
2
|H|2 −

α′

4

(
Tr |F A|2)− Tr |R|2

)]
vol.

The string frame field equations (the equations of motion) are;

Ricg
ij −

1
4

HimnHmn
j + 2∇g

i ∇
g
j ϕ−

α′

4

[
(F A)imab(F A)mab

j − RimnqRmnq
j

]
= 0,

∇g
i (e

−2ϕH i
jk ) = 0, ∇+

i (e−2ϕ(F A)i
j ) = 0.

(2)

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi
identity receives an α′ correction of the form

dH =
α′

4
8π2(p1(Md )− p1(E)) =

α′

4

(
Tr(R ∧ R)− Tr(F A ∧ F A)

)
, (3)

where p1(Md ) and p1(E) are the first Pontrjagin forms of Md with respect to a connection ∇
with curvature R and the vector bundle E with connection A;

This is a kind of a generalization of the Einstein-Hilbert gravity action in the vacuum

S =

∫ [
Scalg

]
vol and equations of motion Ric = 0.

(Institute) 6 / 11



The action and equations of motion

The bosonic part of the ten-dimensional supergravity action in the string frame is

S =

∫
e−2ϕ

[
Scalg + 4(∇gϕ)2 −

1
2
|H|2 −

α′

4

(
Tr |F A|2)− Tr |R|2

)]
vol.

The string frame field equations (the equations of motion) are;

Ricg
ij −

1
4

HimnHmn
j + 2∇g

i ∇
g
j ϕ−

α′

4

[
(F A)imab(F A)mab

j − RimnqRmnq
j

]
= 0,

∇g
i (e

−2ϕH i
jk ) = 0, ∇+

i (e−2ϕ(F A)i
j ) = 0.

(2)

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi
identity receives an α′ correction of the form

dH =
α′

4
8π2(p1(Md )− p1(E)) =

α′

4

(
Tr(R ∧ R)− Tr(F A ∧ F A)

)
, (3)

where p1(Md ) and p1(E) are the first Pontrjagin forms of Md with respect to a connection ∇
with curvature R and the vector bundle E with connection A;

This is a kind of a generalization of the Einstein-Hilbert gravity action in the vacuum

S =

∫ [
Scalg

]
vol and equations of motion Ric = 0.

(Institute) 6 / 11



Heterotic supersymmetry and the Strominger system

A heterotic geometry preserves supersymmetry iff there exists at least one Majorana-Weyl spinor
ϵ such that the following Killing-spinor equations hold

δλ = ∇mϵ =

(
∇g

m +
1
4

HmnpΓ
np
)
ϵ = ∇+ϵ = 0,

δΨ =

(
Γm∂mϕ−

1
12

HmnpΓ
mnp

)
ϵ = (dϕ−

1
2

H) · ϵ = 0,

δξ = F A
mnΓ

mnϵ = F A · ϵ = 0,

(4)

λ,Ψ, ξ are the gravitino, the dilatino and the gaugino fields,

Γi generate the Clifford algebra {Γi , Γj} = 2gij

· means Clifford action of forms on spinors.

THE STROMINGER SYSTEM The system of Killing spinor equations (4) together with the
anomaly cancellation condition (3) is known as the Strominger system.

The Strominger system with trivial forces reduces to the well known system

∇gϵ = 0; F A.ϵ = 0

- The last equation in (4) is the instanton condition which means that the curvature F A is
contained in a Lie algebra of a Lie group which is a stabilizer of a non-trivial spinor.
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Heterotic supersymmetry and equations of motion

Basic Problem: In the presence of a curvature term Tr(R ∧ R) the solutions of the Strominger
system (4), (3) obey the second and the third equations of motion (the second and the third
equations in (2)) but do not always satisfy the Einstein equations of motion.

Theorem (Iv., Phys. Lett. B - 2010)
The solutions of the Strominger system ( (4) and (3)) also solve the heterotic supersymmetric
equations of motion (2) if and only if the curvature R of the connection on the tangent bundle is an
instanton in dimensions 5,6,7,8.

The result was re-proved by Martelli, Sparks ’11, de la Ossa et all ’14 with different proofs which
holds for all dimensions.

In dimension 6 this result fixes the unknown connection ∇ on the tangent bundle due to the
non-Kaehler version of the famous Donaldson-Uhlenbeck-Yau theorem:

- The non-Kaehler version of the famous Donaldson-Uhlenbeck-Yau theorem states that on a
hermitian vector bundle there exists an unique SU(3)-instanton (Yang-Mills connection,
Hermit-Einstein connection) iff the hermitian vector bundle is stable of degree zero.

- This theorem connects the algebraic geometry notion of stability with differential geometry and
non-linear PDE notion of instantons due to the Hitchin- Kobayashi correspondence.

Studying the moduli space of SU(2)-instantons in dimension 4 S.Donaldson establishes the
break-down result for the existence of non-diffeomorphic smooth structures on R4.
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Some open questions

In order to construct compact solutions to the supersymmetric heterotic equations of motion one
has to start investigation of the Strominger system with a compact hermitian manifold with
STABLE TANGENT bundle of degree zero

1 Classify, if possible) hermitian manifolds with STABLE TANGENT bundle of degree zero

2 Is it possible to define the notion of stabilty for G2 and Spin(7) manifolds?

3 Investigate compact G2 and Spin(7) manifolds admitting a G2 and Spin(7) instanton,
respectively.
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In the G2 case we have

Theorem (Iv-Stanchev, 24)

Let (M, ϕ) be an integrable G2 manifold of constant type and the curvature of the characteristic
connection ∇ is a Ricci flat G2-instanton, i.e.

d ∗ ϕ = θ ∧ ∗ϕ (dϕ, ∗ϕ) = const ., R(X ,Y ) ∈ g2, Ric = 0.

Then the torsion 3-form is harmonic, δT = dT = 0.
Moreover, the covariant derivatives of the 3-form T with respect to the Levi-Civita connection and
the characteristic connection coincide, ∇gT = ∇T .

As a consequence of Theorem 3, we obtain

Theorem (Iv-Stanchev 24)

On an integrable G2 manifold of constant type, the next conditions are equivalent:

a) The characteristic connection has curvature R ∈ S2Λ2 with vanishing Ricci tensor;

b) The curvature of the characteristic connection satisfies the Riemannian first Bianchi identity.

c) The torsion 3 form is parallel with respect to the Levi-Civita and to the characteristic
connections simultaneously, ∇gT = ∇T = 0.

In these cases the exterior derivative dϕ of the G2-form ϕ is ∇-parallel, ∇(dϕ) = 0.
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The physically relevant connection on the tangent bundle to be considered in (3), (2) is the
(−)-connection, Bergshoeff, de Roo’ 89, Hull’ 86.
- Reason: the curvature R− is an instanton up to the first order of α′.
- a consequence of the first equation in (4), (3) and the well known identity

R+(X ,Y ,Z ,U)− R−(Z ,U,X ,Y ) =
1
2

dH(X ,Y ,Z ,U). (5)

Indeed, (3) together with (5) imply

R+(X ,Y ,Z ,U)− R−(Z ,U,X ,Y ) = O(α′).

The first equation in (4) yields the holonomy group of ∇+ is contained in G2, i.e. R+(X ,Y ) ⊂ g2.
Therefore R− satisfies the instanton condition in (4) up to the first order of α′.

Theorem (Iv-Stanchev 24)
The curvature R− of the connection ∇− is a G2 instanton if and only if the torsion is closed,
dT = 0.
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