Heterotic Supersymmetry, Strominger System and Equations of **Motion**

Stefan Ivanov University of Sofia "St. Kliment Ohridski" and IMI-BAS

AGT's Session-2024 based on **Phys. Lett. B**-2010 and arXiv:2307.05619

Consider Riemannian manifold (*M*, *g*).

i) ∇*^g* - Levi-Civita connection of the metric *g* ;

- i) ∇*^g* Levi-Civita connection of the metric *g* ;
- \Box The curvature $R^g = [\nabla^g, \nabla^g] \nabla^g_{[,]};$

- i) ∇*^g* Levi-Civita connection of the metric *g* ;
- \Box The curvature $R^g = [\nabla^g, \nabla^g] \nabla^g_{[,]};$
- \blacksquare The Ricci tensor $\mathit{Ric^g} = \sum \mathit{R^g}(X,e_i,e_i,Y);$

- i) ∇*^g* Levi-Civita connection of the metric *g* ;
- \Box The curvature $R^g = [\nabla^g, \nabla^g] \nabla^g_{[,]};$
- \blacksquare The Ricci tensor $\mathit{Ric^g} = \sum \mathit{R^g}(X,e_i,e_i,Y);$
- **i**) The scalar curvature $Scal^g = tr_g Ric^g = \sum Ric^g(e_i, e_i)$.

Consider Riemannian manifold (*M*, *g*).

i) ∇*^g* - Levi-Civita connection of the metric *g* ;

The curvature
$$
R^g = [\nabla^g, \nabla^g] - \nabla^g_{[,]}
$$
;

- \blacksquare The Ricci tensor $\mathit{Ric^g} = \sum \mathit{R^g}(X,e_i,e_i,Y);$
- **i**) The scalar curvature $Scal^g = tr_g Ric^g = \sum Ric^g(e_i, e_i)$.

It is well known that the equations of motion of the Einstein's general theory of gravitation are the Euler-Lagrange equations of the Einstein-Hilbert action

$$
S=\int \textit{Scal}^g \textit{vol}.
$$

Consider Riemannian manifold (*M*, *g*).

i) ∇*^g* - Levi-Civita connection of the metric *g* ;

The curvature
$$
R^g = [\nabla^g, \nabla^g] - \nabla^g_{[,]}
$$
;

The Ricci tensor
$$
Ric^g = \sum R^g(X, e_i, e_i, Y)
$$
;

i) The scalar curvature $Scal^g = tr_g Ric^g = \sum Ric^g(e_i, e_i)$.

It is well known that the equations of motion of the Einstein's general theory of gravitation are the Euler-Lagrange equations of the Einstein-Hilbert action

$$
S=\int \textit{Scal}^g \textit{vol}.
$$

The Euler-Lagrange equations of the Einstein-Hilbert action are the well known equations:

$$
Ric^g=0.
$$

Consider Riemannian manifold (*M*, *g*).

i) ∇*^g* - Levi-Civita connection of the metric *g* ;

The curvature
$$
R^g = [\nabla^g, \nabla^g] - \nabla^g_{[,]}
$$
;

The Ricci tensor
$$
Ric^g = \sum R^g(X, e_i, e_i, Y)
$$
;

i) The scalar curvature $Scal^g = tr_g Ric^g = \sum Ric^g(e_i, e_i)$.

It is well known that the equations of motion of the Einstein's general theory of gravitation are the Euler-Lagrange equations of the Einstein-Hilbert action

$$
S=\int \textit{Scal}^g \textit{vol}.
$$

The Euler-Lagrange equations of the Einstein-Hilbert action are the well known equations:

$$
Ric^g=0.
$$

Incorporating the wave nature of the particals one considers also the preserving supersymmetry equations of the form

$$
\nabla^g \epsilon = 0;
$$

where ϵ is a non-zero spinor.

1 The existence of a parallel spinor forces the holonomy group of ∇^g to be contained in a group which is a stabilizer of a spinor. Pure algebraically, these groups are known to be *SU*(*n*), *Sp*(*n*), *G*2, *Spin*(7).

- **1** The existence of a parallel spinor forces the holonomy group of ∇^g to be contained in a group which is a stabilizer of a spinor. Pure algebraically, these groups are known to be *SU*(*n*), *Sp*(*n*), *G*2, *Spin*(7).
- **2** The compact manifold solving the supersimmetry equations are:

- **1** The existence of a parallel spinor forces the holonomy group of ∇^g to be contained in a group which is a stabilizer of a spinor. Pure algebraically, these groups are known to be *SU*(*n*), *Sp*(*n*), *G*2, *Spin*(7).
- **2** The compact manifold solving the supersimmetry equations are:
	- *Hol*(∇*^g*) ⊂ *SU*(*n*) Clabi-Yau spaces, Ricci flat Kaehler.

- **1** The existence of a parallel spinor forces the holonomy group of ∇^g to be contained in a group which is a stabilizer of a spinor. Pure algebraically, these groups are known to be *SU*(*n*), *Sp*(*n*), *G*2, *Spin*(7).
- **2** The compact manifold solving the supersimmetry equations are:
	- *Hol*(∇*^g*) ⊂ *SU*(*n*) Clabi-Yau spaces, Ricci flat Kaehler.
	- *Hol*(∇*^g*) ⊂ *Sp*(*n*) hyperKaehler spaces:

- **1** The existence of a parallel spinor forces the holonomy group of ∇^g to be contained in a group which is a stabilizer of a spinor. Pure algebraically, these groups are known to be *SU*(*n*), *Sp*(*n*), *G*2, *Spin*(7).
- **2** The compact manifold solving the supersimmetry equations are:
	- *Hol*(∇*^g*) ⊂ *SU*(*n*) Clabi-Yau spaces, Ricci flat Kaehler.
	- *Hol*(∇*^g*) ⊂ *Sp*(*n*) hyperKaehler spaces:
	- *Hol*(∇*^g*) ⊂ *G*2, *dim* = 7 Joice spaces;

- **1** The existence of a parallel spinor forces the holonomy group of ∇^g to be contained in a group which is a stabilizer of a spinor. Pure algebraically, these groups are known to be *SU*(*n*), *Sp*(*n*), *G*2, *Spin*(7).
- **2** The compact manifold solving the supersimmetry equations are:
	- *Hol*(∇*^g*) ⊂ *SU*(*n*) Clabi-Yau spaces, Ricci flat Kaehler.
	- *Hol*(∇*^g*) ⊂ *Sp*(*n*) hyperKaehler spaces:
	- *Hol*(∇*^g*) ⊂ *G*2, *dim* = 7 Joice spaces;
	- $Hol(\nabla^g) \subset Spin(7)$, $dim = 8$ Joice spaces.

- **1** The existence of a parallel spinor forces the holonomy group of ∇^g to be contained in a group which is a stabilizer of a spinor. Pure algebraically, these groups are known to be *SU*(*n*), *Sp*(*n*), *G*2, *Spin*(7).
- **2** The compact manifold solving the supersimmetry equations are:
	- *Hol*(∇*^g*) ⊂ *SU*(*n*) Clabi-Yau spaces, Ricci flat Kaehler.
	- *Hol*(∇*^g*) ⊂ *Sp*(*n*) hyperKaehler spaces:
	- *Hol*(∇*^g*) ⊂ *G*2, *dim* = 7 Joice spaces;
	- $Hol(\nabla^g) \subset Spin(7)$, $dim = 8$ Joice spaces.

In all these cases the Ricci tensor vanishes authomatically, $Ric^g = 0$ and solves the Einstein equations of motion.

The Einstein equations of motion

$$
Ric^g = 0 \tag{1}
$$

are highly non-linear PDE's and constructing compact solutions is extremelly difficult.

1 First: To the compact Kaehler manifold with holomorphically trivial first Chern class, i.e. Kaehler space with non-zero holomorphic volume form.

- **1** First: To the compact Kaehler manifold with holomorphically trivial first Chern class, i.e. Kaehler space with non-zero holomorphic volume form.
- ² Second. The holomorphic volume form has to be parallel with respect to the Levi-Civita connection.

- **1** First: To the compact Kaehler manifold with holomorphically trivial first Chern class, i.e. Kaehler space with non-zero holomorphic volume form.
- 2 Second. The holomorphic volume form has to be parallel with respect to the Levi-Civita connection.
- **3** The first condition is topological and there are many compact examples.

- **1** First: To the compact Kaehler manifold with holomorphically trivial first Chern class, i.e. Kaehler space with non-zero holomorphic volume form.
- ² Second. The holomorphic volume form has to be parallel with respect to the Levi-Civita connection.
- **3** The first condition is topological and there are many compact examples.
- \bullet The second condition becomes a consequence of the first due to the Yau's fundamental result solving the Calabi's conjecture.

- **1** First: To the compact Kaehler manifold with holomorphically trivial first Chern class, i.e. Kaehler space with non-zero holomorphic volume form.
- ² Second. The holomorphic volume form has to be parallel with respect to the Levi-Civita connection.
- **3** The first condition is topological and there are many compact examples.
- \bullet The second condition becomes a consequence of the first due to the Yau's fundamental result solving the Calabi's conjecture.
- ⁵ From this point of view, the Yau's theorem can be stated in a more "physical way":

Theorem (Yau'77)

A compact complex manifold with holomorphically trivial first Chern class admitting a Kaehler metric admits a solution to supersymmetric Einstein equation [\(1\)](#page-10-0)*.*

- **1** First: To the compact Kaehler manifold with holomorphically trivial first Chern class, i.e. Kaehler space with non-zero holomorphic volume form.
- ² Second. The holomorphic volume form has to be parallel with respect to the Levi-Civita connection.
- **3** The first condition is topological and there are many compact examples.
- \bullet The second condition becomes a consequence of the first due to the Yau's fundamental result solving the Calabi's conjecture.
- ⁵ From this point of view, the Yau's theorem can be stated in a more "physical way":

Theorem (Yau'77)

A compact complex manifold with holomorphically trivial first Chern class admitting a Kaehler metric admits a solution to supersymmetric Einstein equation [\(1\)](#page-10-0)*.*

One possible theory generalizing the Einstein general relativity incorporating additional forces is the so called heterotic string theory.

 \bullet the spacetime metric g ;

- \bullet the spacetime metric g ;
- \bullet the NS three-form field strength (flux) H ;

- \bullet the spacetime metric g ;
- \bullet the NS three-form field strength (flux) H ;
- \bullet the dilaton ϕ ;

- **i**) the spacetime metric *g*;
- \bullet the NS three-form field strength (flux) H ;
- \bullet the dilaton ϕ ;
- **2** the gauge connection *A* with curvature 2-form F^A .

- **i**) the spacetime metric *g*;
- \bullet the NS three-form field strength (flux) H ;
- \bullet the dilaton ϕ ;
- **2** the gauge connection *A* with curvature 2-form F^A .
	- The bosonic geometry is of the form $\mathbb{R}^{1,9-d}\times M^d$.
	- The bosonic fields are non-trivial only on M^d , $d\leq 8.$

- i) the spacetime metric *g*;
- the NS three-form field strength (flux) H ;
- the dilaton ϕ :
- **2** the gauge connection *A* with curvature 2-form F^A .
	- The bosonic geometry is of the form $\mathbb{R}^{1,9-d}\times M^d$.
	- The bosonic fields are non-trivial only on M^d , $d\leq 8.$
	- The two torsion connections $\nabla^{\pm} = \nabla^{g} \pm \frac{1}{2}H$, ∇^{g} is the Levi-Civita connection of the Riemannian metric *g*.
	- Both connections preserve the metric, $\nabla^{\pm}g=0$ and have totally skew-symmetric torsion ±*H*, respectively.
	- An unknown connection ∇ on the tangent bundle.
	- R^g , R^{\pm} , R the corresponding curvatures.

The bosonic part of the ten-dimensional supergravity action in the string frame is

$$
S = \int e^{-2\phi} \Big[Scal^g + 4(\nabla^g \phi)^2 - \frac{1}{2}|H|^2 - \frac{\alpha'}{4} \Big(\pi |F^A|^2 \Big) - \pi |R|^2 \Big) \Big] \, vol.
$$

The bosonic part of the ten-dimensional supergravity action in the string frame is

$$
S = \int e^{-2\phi} \Big[Scal^g + 4(\nabla^g \phi)^2 - \frac{1}{2}|H|^2 - \frac{\alpha'}{4} \Big(\pi |F^A|^2 \Big) - \pi |R|^2 \Big) \Big] \, \text{vol}.
$$

The string frame field equations (the equations of motion) are;

$$
Ric_{ij}^{g} - \frac{1}{4} H_{imn} H_{j}^{mn} + 2\nabla_{i}^{g} \nabla_{j}^{g} \phi - \frac{\alpha'}{4} \Big[(F^{A})_{imab} (F^{A})_{j}^{mab} - R_{imnq} H_{j}^{mnq} \Big] = 0, \qquad (2)
$$

$$
\nabla_{i}^{g} (e^{-2\phi} H_{jk}^{i}) = 0, \qquad \nabla_{i}^{+} (e^{-2\phi} (F^{A})_{j}^{i}) = 0.
$$

The bosonic part of the ten-dimensional supergravity action in the string frame is

$$
S = \int e^{-2\phi} \Big[Scal^g + 4(\nabla^g \phi)^2 - \frac{1}{2}|H|^2 - \frac{\alpha'}{4} \Big(\pi |F^A|^2 \Big) - \pi |R|^2 \Big) \Big] \, vol.
$$

• The string frame field equations (the equations of motion) are;

$$
Ric_{ij}^{g} - \frac{1}{4}H_{imn}H_{j}^{mn} + 2\nabla_{i}^{g}\nabla_{j}^{g}\phi - \frac{\alpha'}{4}\Big[(F^{A})_{imab}(F^{A})_{j}^{mab} - R_{imnq}R_{j}^{mnd}\Big] = 0,
$$

$$
\nabla_{i}^{g}(e^{-2\phi}H_{jk}^{i}) = 0, \qquad \nabla_{i}^{+}(e^{-2\phi}(F^{A})_{j}^{i}) = 0.
$$
 (2)

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi identity receives an α' correction of the form

$$
dH = \frac{\alpha'}{4} 8\pi^2 (p_1(M^d) - p_1(E)) = \frac{\alpha'}{4} \Big(\text{Tr}(R \wedge R) - \text{Tr}(F^A \wedge F^A) \Big), \tag{3}
$$

where $p_1(M^d)$ and $p_1(E)$ are the first Pontrjagin forms of M^d with respect to a connection ∇ with curvature *R* and the vector bundle *E* with connection *A*;

The bosonic part of the ten-dimensional supergravity action in the string frame is

$$
S = \int e^{-2\phi} \Big[Scal^g + 4(\nabla^g \phi)^2 - \frac{1}{2}|H|^2 - \frac{\alpha'}{4} \Big(\pi |F^A|^2 \Big) - \pi |R|^2 \Big) \Big] \, \text{vol}.
$$

• The string frame field equations (the equations of motion) are;

$$
Ric_{ij}^{g} - \frac{1}{4}H_{imn}H_{j}^{mn} + 2\nabla_{i}^{g}\nabla_{j}^{g}\phi - \frac{\alpha'}{4}\Big[(F^{A})_{imab}(F^{A})_{j}^{mab} - R_{imnq}R_{j}^{mnd}\Big] = 0,
$$

$$
\nabla_{i}^{g}(e^{-2\phi}H_{jk}^{i}) = 0, \qquad \nabla_{i}^{+}(e^{-2\phi}(F^{A})_{j}^{i}) = 0.
$$
 (2)

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi identity receives an α' correction of the form

$$
dH = \frac{\alpha'}{4} 8\pi^2 (p_1(M^d) - p_1(E)) = \frac{\alpha'}{4} \Big(\text{Tr}(R \wedge R) - \text{Tr}(F^A \wedge F^A) \Big), \tag{3}
$$

where $p_1(M^d)$ and $p_1(E)$ are the first Pontrjagin forms of M^d with respect to a connection ∇ with curvature *R* and the vector bundle *E* with connection *A*;

This is a kind of a generalization of the Einstein-Hilbert gravity action in the vacuum

$$
S = \int \left[\text{Scal}^g \right] \text{vol} \quad \text{and} \quad \text{equations} \quad \text{of} \quad \text{motion} \quad \text{Ric} = 0.
$$

A heterotic geometry preserves supersymmetry iff there exists at least one Majorana-Weyl spinor ϵ such that the following Killing-spinor equations hold

$$
\delta_{\lambda} = \nabla_{m}\epsilon = \left(\nabla_{m}^{g} + \frac{1}{4}H_{mnp}\Gamma^{np}\right)\epsilon = \nabla^{+}\epsilon = 0,
$$

\n
$$
\delta_{\Psi} = \left(\Gamma^{m}\partial_{m}\phi - \frac{1}{12}H_{mnp}\Gamma^{mnp}\right)\epsilon = (d\phi - \frac{1}{2}H) \cdot \epsilon = 0,
$$

\n
$$
\delta_{\xi} = F_{mn}^{A}\Gamma^{mn}\epsilon = F^{A} \cdot \epsilon = 0,
$$
\n(4)

- $\bullet \lambda$, Ψ , ξ are the gravitino, the dilatino and the gaugino fields,
- Γ*ⁱ* generate the Clifford algebra {Γ*ⁱ* , Γ*j*} = 2*gij*
- means Clifford action of forms on spinors.

A heterotic geometry preserves supersymmetry iff there exists at least one Majorana-Weyl spinor ϵ such that the following Killing-spinor equations hold

$$
\delta_{\lambda} = \nabla_{m}\epsilon = \left(\nabla_{m}^{g} + \frac{1}{4}H_{mnp}\Gamma^{np}\right)\epsilon = \nabla^{+}\epsilon = 0,
$$

\n
$$
\delta_{\Psi} = \left(\Gamma^{m}\partial_{m}\phi - \frac{1}{12}H_{mnp}\Gamma^{mnp}\right)\epsilon = (d\phi - \frac{1}{2}H) \cdot \epsilon = 0,
$$

\n
$$
\delta_{\xi} = F_{mn}^{A}\Gamma^{mn}\epsilon = F^{A} \cdot \epsilon = 0,
$$
\n(4)

- $\bullet \lambda$, Ψ , ξ are the gravitino, the dilatino and the gaugino fields,
- Γ*ⁱ* generate the Clifford algebra {Γ*ⁱ* , Γ*j*} = 2*gij*
- means Clifford action of forms on spinors.

THE STROMINGER SYSTEM The system of Killing spinor equations [\(4\)](#page-35-0) together with the anomaly cancellation condition [\(3\)](#page-31-0) is known as the Strominger system.

A heterotic geometry preserves supersymmetry iff there exists at least one Majorana-Weyl spinor ϵ such that the following Killing-spinor equations hold

$$
\delta_{\lambda} = \nabla_{m}\epsilon = \left(\nabla_{m}^{g} + \frac{1}{4}H_{mnp}\Gamma^{np}\right)\epsilon = \nabla^{+}\epsilon = 0,
$$
\n
$$
\delta_{\Psi} = \left(\Gamma^{m}\partial_{m}\phi - \frac{1}{12}H_{mnp}\Gamma^{mnp}\right)\epsilon = \left(d\phi - \frac{1}{2}H\right)\cdot\epsilon = 0,
$$
\n
$$
\delta_{\xi} = F_{mn}^{A}\Gamma^{mn}\epsilon = F^{A}\cdot\epsilon = 0,
$$
\n(4)

- $\bullet \lambda$, Ψ , ξ are the gravitino, the dilatino and the gaugino fields,
- Γ*ⁱ* generate the Clifford algebra {Γ*ⁱ* , Γ*j*} = 2*gij*
- means Clifford action of forms on spinors.

THE STROMINGER SYSTEM The system of Killing spinor equations [\(4\)](#page-35-0) together with the anomaly cancellation condition [\(3\)](#page-31-0) is known as the Strominger system.

The Strominger system with trivial forces reduces to the well known system

$$
\nabla^g \epsilon = 0; \qquad F^A . \epsilon = 0
$$

A heterotic geometry preserves supersymmetry iff there exists at least one Majorana-Weyl spinor ϵ such that the following Killing-spinor equations hold

$$
\delta_{\lambda} = \nabla_{m}\epsilon = \left(\nabla_{m}^{g} + \frac{1}{4}H_{mnp}\Gamma^{np}\right)\epsilon = \nabla^{+}\epsilon = 0,
$$
\n
$$
\delta_{\Psi} = \left(\Gamma^{m}\partial_{m}\phi - \frac{1}{12}H_{mnp}\Gamma^{mnp}\right)\epsilon = \left(d\phi - \frac{1}{2}H\right)\cdot\epsilon = 0,
$$
\n
$$
\delta_{\xi} = F_{mn}^A\Gamma^{mn}\epsilon = F^A\cdot\epsilon = 0,
$$
\n(4)

- $\bullet \lambda$, Ψ , ξ are the gravitino, the dilatino and the gaugino fields,
- Γ*ⁱ* generate the Clifford algebra {Γ*ⁱ* , Γ*j*} = 2*gij*
- means Clifford action of forms on spinors.

THE STROMINGER SYSTEM The system of Killing spinor equations [\(4\)](#page-35-0) together with the anomaly cancellation condition [\(3\)](#page-31-0) is known as the Strominger system.

The Strominger system with trivial forces reduces to the well known system

$$
\nabla^g \epsilon = 0; \qquad F^A . \epsilon = 0
$$

- The last equation in [\(4\)](#page-35-0) is the instanton condition which means that the curvature *F ^A* is contained in a Lie algebra of a Lie group which is a stabilizer of a non-trivial spinor.

Basic Problem: In the presence of a curvature term $Tr(R \wedge R)$ the solutions of the Strominger system [\(4\)](#page-35-0), [\(3\)](#page-31-0) obey the second and the third equations of motion (the second and the third equations in [\(2\)](#page-31-1)) but do not always satisfy the Einstein equations of motion.

Basic Problem: In the presence of a curvature term $Tr(R \wedge R)$ the solutions of the Strominger system [\(4\)](#page-35-0), [\(3\)](#page-31-0) obey the second and the third equations of motion (the second and the third equations in [\(2\)](#page-31-1)) but do not always satisfy the Einstein equations of motion.

Theorem (Iv., Phys. Lett. B - 2010)

The solutions of the Strominger system ([\(4\)](#page-35-0) *and* [\(3\)](#page-31-0)*) also solve the heterotic supersymmetric equations of motion* [\(2\)](#page-31-1) *if and only if the curvature R of the connection on the tangent bundle is an instanton in dimensions 5,6,7,8.*

The result was re-proved by Martelli, Sparks '11, de la Ossa et all '14 with different proofs which holds for all dimensions.

Basic Problem: In the presence of a curvature term $Tr(R \wedge R)$ the solutions of the Strominger system [\(4\)](#page-35-0), [\(3\)](#page-31-0) obey the second and the third equations of motion (the second and the third equations in [\(2\)](#page-31-1)) but do not always satisfy the Einstein equations of motion.

Theorem (Iv., Phys. Lett. B - 2010)

The solutions of the Strominger system ([\(4\)](#page-35-0) *and* [\(3\)](#page-31-0)*) also solve the heterotic supersymmetric equations of motion* [\(2\)](#page-31-1) *if and only if the curvature R of the connection on the tangent bundle is an instanton in dimensions 5,6,7,8.*

The result was re-proved by Martelli, Sparks '11, de la Ossa et all '14 with different proofs which holds for all dimensions.

In dimension 6 this result fixes the unknown connection ∇ on the tangent bundle due to the non-Kaehler version of the famous Donaldson-Uhlenbeck-Yau theorem:

Basic Problem: In the presence of a curvature term $Tr(R \wedge R)$ the solutions of the Strominger system [\(4\)](#page-35-0), [\(3\)](#page-31-0) obey the second and the third equations of motion (the second and the third equations in [\(2\)](#page-31-1)) but do not always satisfy the Einstein equations of motion.

Theorem (Iv., Phys. Lett. B - 2010)

The solutions of the Strominger system ([\(4\)](#page-35-0) *and* [\(3\)](#page-31-0)*) also solve the heterotic supersymmetric equations of motion* [\(2\)](#page-31-1) *if and only if the curvature R of the connection on the tangent bundle is an instanton in dimensions 5,6,7,8.*

The result was re-proved by Martelli, Sparks '11, de la Ossa et all '14 with different proofs which holds for all dimensions.

In dimension 6 this result fixes the unknown connection ∇ on the tangent bundle due to the non-Kaehler version of the famous Donaldson-Uhlenbeck-Yau theorem:

- The non-Kaehler version of the famous Donaldson-Uhlenbeck-Yau theorem states that on a hermitian vector bundle there exists an unique *SU*(3)-instanton (Yang-Mills connection, Hermit-Einstein connection) iff the hermitian vector bundle is stable of degree zero.

- This theorem connects the algebraic geometry notion of stability with differential geometry and non-linear PDE notion of instantons due to the Hitchin- Kobayashi correspondence.

Basic Problem: In the presence of a curvature term $Tr(R \wedge R)$ the solutions of the Strominger system [\(4\)](#page-35-0), [\(3\)](#page-31-0) obey the second and the third equations of motion (the second and the third equations in [\(2\)](#page-31-1)) but do not always satisfy the Einstein equations of motion.

Theorem (Iv., Phys. Lett. B - 2010)

The solutions of the Strominger system ([\(4\)](#page-35-0) *and* [\(3\)](#page-31-0)*) also solve the heterotic supersymmetric equations of motion* [\(2\)](#page-31-1) *if and only if the curvature R of the connection on the tangent bundle is an instanton in dimensions 5,6,7,8.*

The result was re-proved by Martelli, Sparks '11, de la Ossa et all '14 with different proofs which holds for all dimensions.

In dimension 6 this result fixes the unknown connection ∇ on the tangent bundle due to the non-Kaehler version of the famous Donaldson-Uhlenbeck-Yau theorem:

- The non-Kaehler version of the famous Donaldson-Uhlenbeck-Yau theorem states that on a hermitian vector bundle there exists an unique *SU*(3)-instanton (Yang-Mills connection, Hermit-Einstein connection) iff the hermitian vector bundle is stable of degree zero.

- This theorem connects the algebraic geometry notion of stability with differential geometry and non-linear PDE notion of instantons due to the Hitchin- Kobayashi correspondence.

Studying the moduli space of *SU*(2)-instantons in dimension 4 S.Donaldson establishes the break-down result for the existence of non-diffeomorphic smooth structures on *R*⁴ .

1 Classify, if possible) hermitian manifolds with STABLE TANGENT bundle of degree zero

1 Classify, if possible) hermitian manifolds with STABLE TANGENT bundle of degree zero

2 Is it possible to define the notion of stabilty for G_2 and *Spin*(7) manifolds?

- **1** Classify, if possible) hermitian manifolds with STABLE TANGENT bundle of degree zero
- 2 Is it possible to define the notion of stabilty for G_2 and *Spin*(7) manifolds?
- **3** Investigate compact G_2 and *Spin*(7) manifolds admitting a G_2 and *Spin*(7) instanton, respectively.

Theorem (Iv-Stanchev, 24)

Let (M, ϕ) *be an integrable G₂ manifold of constant type and the curvature of the characteristic connection* ∇ *is a Ricci flat* G_2 -instanton, *i.e.*

 $d * \phi = \theta \wedge * \phi$ ($d\phi, * \phi$) = *const.*, $R(X, Y) \in g_2$, $Ric = 0$.

Then the torsion 3-form is harmonic, $\delta T = dT = 0$.

Moreover, the covariant derivatives of the 3-form T with respect to the Levi-Civita connection and the characteristic connection coincide, $\nabla^g T = \nabla T$.

Theorem (Iv-Stanchev, 24)

Let (M, ϕ) *be an integrable G₂ manifold of constant type and the curvature of the characteristic connection* ∇ *is a Ricci flat* G_2 -instanton, *i.e.*

 $d * \phi = \theta \wedge * \phi$ ($d\phi, * \phi$) = *const.*, $R(X, Y) \in g_2$, $Ric = 0$.

Then the torsion 3-form is harmonic, $\delta T = dT = 0$. *Moreover, the covariant derivatives of the 3-form T with respect to the Levi-Civita connection and the characteristic connection coincide,* $\nabla^g T = \nabla T$.

As a consequence of Theorem [3,](#page-48-0) we obtain

Theorem (Iv-Stanchev 24)

On an integrable G₂ manifold of constant type, the next conditions are equivalent:

- a) *The characteristic connection has curvature R* ∈ *S* 2Λ ² *with vanishing Ricci tensor;*
- b) *The curvature of the characteristic connection satisfies the Riemannian first Bianchi identity.*
- c) *The torsion 3 form is parallel with respect to the Levi-Civita and to the characteristic connections simultaneously,* $\nabla^g T = \nabla T = 0$.

In these cases the exterior derivative $d\phi$ *of the* G_2 *-form* ϕ *is* ∇ -parallel, $\nabla(d\phi) = 0$.

The physically relevant connection on the tangent bundle to be considered in [\(3\)](#page-31-0), [\(2\)](#page-31-1) is the (−)-connection, Bergshoeff, de Roo' 89, Hull' 86.

- Reason: the curvature R^- is an instanton up to the first order of $\alpha'.$

- a consequence of the first equation in [\(4\)](#page-35-0), [\(3\)](#page-31-0) and the well known identity

$$
R^{+}(X, Y, Z, U) - R^{-}(Z, U, X, Y) = \frac{1}{2}dH(X, Y, Z, U).
$$
 (5)

The physically relevant connection on the tangent bundle to be considered in [\(3\)](#page-31-0), [\(2\)](#page-31-1) is the (−)-connection, Bergshoeff, de Roo' 89, Hull' 86.

- Reason: the curvature R^- is an instanton up to the first order of $\alpha'.$

- a consequence of the first equation in [\(4\)](#page-35-0), [\(3\)](#page-31-0) and the well known identity

$$
R^{+}(X, Y, Z, U) - R^{-}(Z, U, X, Y) = \frac{1}{2}dH(X, Y, Z, U).
$$
 (5)

Indeed, [\(3\)](#page-31-0) together with [\(5\)](#page-50-0) imply

$$
R^{+}(X, Y, Z, U) - R^{-}(Z, U, X, Y) = O(\alpha').
$$

The first equation in [\(4\)](#page-35-0) yields the holonomy group of ∇^+ is contained in G_2 , i.e. $R^+(X, Y) \subset g_2$. Therefore R^- satisfies the instanton condition in [\(4\)](#page-35-0) up to the first order of α' .

The physically relevant connection on the tangent bundle to be considered in [\(3\)](#page-31-0), [\(2\)](#page-31-1) is the (−)-connection, Bergshoeff, de Roo' 89, Hull' 86.

- Reason: the curvature R^- is an instanton up to the first order of $\alpha'.$

- a consequence of the first equation in [\(4\)](#page-35-0), [\(3\)](#page-31-0) and the well known identity

$$
R^{+}(X, Y, Z, U) - R^{-}(Z, U, X, Y) = \frac{1}{2}dH(X, Y, Z, U).
$$
 (5)

Indeed, [\(3\)](#page-31-0) together with [\(5\)](#page-50-0) imply

$$
R^{+}(X, Y, Z, U) - R^{-}(Z, U, X, Y) = O(\alpha').
$$

The first equation in [\(4\)](#page-35-0) yields the holonomy group of ∇^+ is contained in G_2 , i.e. $R^+(X, Y) \subset g_2$. Therefore R^- satisfies the instanton condition in [\(4\)](#page-35-0) up to the first order of α' .

Theorem (Iv-Stanchev 24)

The curvature R[−] of the connection ∇ [−] *is a G*₂ *instanton if and only if the torsion is closed,* $dT = 0$.