Квази-минимални повърхнини в 4-мерни псевдо-Евклидови пространства

Величка Милушева

Отчетна сесия на ИМИ 05.12.2024 г.

Quasi-minimal (marginally trapped) surfaces

The concept of *trapped surfaces* – introduced by ROGER PENROSE [*Phys. Rev. Lett.*, 1965] in connection with the theory of black holes.

Definition 1.

A surface in the Minkowski space \mathbb{E}^4_1 is called *marginally trapped* if its mean curvature vector is lightlike at each point.

Definition 2.

A surface in the pseudo-Euclidean space \mathbb{E}_2^4 is called *quasi-minimal* if its mean curvature vector is lightlike at each point of the surface.

 Marginally trapped surfaces with positive relative nullity – classified by B.-Y. CHEN and J. VAN DER VEKEN [Class. Quantum Grav., 2007].

The relative null space at a point $p \in M$ of a surface M with second fundamental form h is defined by

$$\mathcal{N}_p(M) = \{X \in T_pM \mid h(X,Y) = 0 \ \forall \ Y \in T_pM\}.$$

The dimension of $\mathcal{N}_p(M)$, denoted by $\nu_p(M)$, is called the **relative nullity** at p.

The surface M is said to have **positive relative nullity** if $\nu_p(M) > 0$ for each $p \in M$.

Theorem 1.1 [Chen, Van der Veken, Class. Quantum Grav., 2007]

Up to isometries of the Minkowski spacetime \mathbb{E}^4_1 , there exist two families of marginally trapped surfaces with positive relative nullity in \mathbb{E}^4_1 :

- (1) A surface defined by L(u, v) = (f(u), u, v, f(u)), where f(u) is an arbitrary differentiable function with f''(u) being nowhere zero.
- (2) A surface defined by

$$L(u,v) = \left(\int_0^u r(u)q'(u)du + q(u)v, \ v\cos u - \int_0^u r(u)\sin udu, \right.$$

$$v\sin u + \int_0^u r(u)\cos udu, \int_0^u r(u)q'(u)du + q(u)v,$$

where q and r are defined on an open interval $I \ni 0$ satisfying $q''(u) + q(u) \neq 0$ for each $u \in I$.

Conversely, every marginally trapped surface with positive relative nullity in the Minkowski spacetime \mathbb{E}^4_1 is congruent to an open portion of a surface obtained from these two families.

 Marginally trapped surfaces with parallel mean curvature vector – classified by B.-Y. CHEN and J. VAN DER VEKEN in [Houston J. Math., 2010].

Theorem 1.2 [Chen, Van der Veken, Houston J. Math., 2010]

Let M be a marginally trapped surface with parallel mean curvature vector in the Minkowski spacetime \mathbb{E}^4_1 . Then, M is an open part of one of the following six types of surfaces:

(1) a flat parallel surface given by

$$L(u,v) = \frac{1}{2} \left((1-b)u^2 + (1+b)v^2, (1-b)u^2 + (1+b)v^2, 2u, 2v \right), \ b \in \mathbb{R};$$

(2) a flat parallel surface given by

$$L(u, v) = a (\cosh u; \sinh u; \cos v; \sin v), \quad a > 0;$$

- (3) a non-parallel flat surface lying in the hyperplane $\mathcal{H}_0 = \{(x_1; x_2; x_3; x_4) \in \mathbb{E}_1^4 : x_1 = x_4\}$ but not in any light cone;
- (4) a non-parallel flat surface lying in the light cone $\mathcal{LC} = \{x = (x_1; x_2; x_3; x_4) \in \mathbb{E}_1^4 : \langle x, x \rangle = 0\};$
- (5) a non-parallel surface lying in the de Sitter spacetime $\mathbb{S}_1^3(r^2)$ for some r>0 such that the mean curvature vector H' of M in $\mathbb{S}_1^3(r^2)$ satisfies $\langle H',H'\rangle=-r^2;$
- (6) a non-parallel surface lying in the hyperbolic space $\mathbb{H}^3(-r^2)$ for some r>0 such that the mean curvature vector H' of M in $\mathbb{H}^3(-r^2)$ satisfies $\langle H',H'\rangle=r^2$.

Conversely, all surfaces of types (1)–(6) above give rise to marginally trapped surfaces with parallel mean curvature vector in \mathbb{E}^4_1 .

- Marginally trapped surfaces in E₁⁴ which are invariant under boost transformations – in [S. HAESEN, M. ORTEGA, Class. Quantum Grav., 2007].
- Marginally trapped surfaces in \mathbb{E}^4_1 which are invariant under spacelike rotations in [S. HAESEN, M. ORTEGA, *Gen. Relativ. Grav.*, 2009].
- Marginally trapped surfaces which are invariant under the group of screw rotations – in [S. HAESEN, M. ORTEGA, J. Math. Anal. Appl., 2009].
- Marginally trapped surfaces with pointwise 1-type Gauss map in [V.M., Int. J. Geom. 2013] and [N. Turgay, Gen. Relativ. Grav. 2014].

Theorem 1.3 [G. Ganchev, V.M., J. Math. Phys. 2012]

Let $\gamma_1, \gamma_2, \nu, \lambda, \mu, \beta_1, \beta_2$ be smooth functions, defined in a domain $\mathcal{D}, \mathcal{D} \subset \mathbb{R}^2$, and satisfying the conditions

$$\frac{\mu_{u}}{\mu(2\gamma_{2} + \beta_{1})} > 0; \qquad \frac{\mu_{v}}{\mu(2\gamma_{1} + \beta_{2})} > 0;
-\gamma_{1}\sqrt{E}\sqrt{G} = (\sqrt{E})_{v}; \qquad -\gamma_{2}\sqrt{E}\sqrt{G} = (\sqrt{G})_{u};
2\lambda \mu = \frac{1}{\sqrt{E}}(\gamma_{2})_{u} + \frac{1}{\sqrt{G}}(\gamma_{1})_{v} - ((\gamma_{1})^{2} + (\gamma_{2})^{2});
2\lambda \gamma_{2} - 2\nu \gamma_{1} - \lambda \beta_{1} + (1 + \nu) \beta_{2} = \frac{1}{\sqrt{E}}\lambda_{u} - \frac{1}{\sqrt{G}}\nu_{v};
2\lambda \gamma_{1} + 2\nu \gamma_{2} + (1 - \nu)\beta_{1} - \lambda \beta_{2} = \frac{1}{\sqrt{E}}\nu_{u} + \frac{1}{\sqrt{G}}\lambda_{v};
\gamma_{1}\beta_{1} - \gamma_{2}\beta_{2} + 2\nu \mu = -\frac{1}{\sqrt{E}}(\beta_{2})_{u} + \frac{1}{\sqrt{G}}(\beta_{1})_{v},$$

where $\sqrt{E} = \frac{\mu_u}{\mu(2\gamma_2 + \beta_1)}$, $\sqrt{G} = \frac{\mu_v}{\mu(2\gamma_1 + \beta_2)}$. Let $\{x_0, y_0, (n_1)_0, (n_2)_0\}$ be vectors at a point $p_0 \in \mathbb{R}^4_1$, such that x_0, y_0 are unit spacelike vectors, $\langle x_0, y_0 \rangle = 0$, $(n_1)_0, (n_2)_0$ are lightlike vectors, and $\langle (n_1)_0, (n_2)_0 \rangle = -1$. Then there exist a subdomain $\mathcal{D}_0 \subset \mathcal{D}$ and a unique marginally trapped surface $M^2 : z = z(u, v), (u, v) \in \mathcal{D}_0$ free of flat points, such that M^2 passes through p_0 , the functions $\gamma_1, \gamma_2, \nu, \lambda, \mu, \beta_1, \beta_2$ are the geometric functions of M^2 and $\{x_0, y_0, (n_1)_0, (n_2)_0\}$ is the geometric frame of M^2 at the point p_0 .

Classification results on quasi-minimal surfaces in \mathbb{E}^4_2

- In [J. Math. Anal. Appl., 2008] B.-Y. Chen classified quasi-minimal Lorentz flat surfaces in \mathbb{E}_2^4 .
- Quasi-minimal surfaces with constant (non-zero) Gauss curvature in \mathbb{E}_2^4 were classified by B.-Y. CHEN and D. YANG in [Hokkaido Math. J., 2009] and [J. Math. Anal. Appl., 2010].
- The classification of quasi-minimal surfaces with parallel mean curvature vector is obtained in [CHEN, GARAY, Result. Math., 2009].
- In [Cent. Eur. J. Math., 2014] G. GANCHEV and V. M. obtained the classification of quasi-minimal rotational surfaces in \mathbb{E}_2^4 .

Quasi-minimal Rotational Surfaces in \mathbb{E}^4_2

Theorem 1.4 [G. Ganchev, V.M., Cent. Eur. J. Math., 2014]

Given a smooth positive function $r(u):I\subset\mathbb{R}\to\mathbb{R}$, define the functions

$$\varphi(u) = \eta \int \frac{rr'' + (r')^2 + 1}{r(1 + (r')^2)} du, \quad \eta = \pm 1,$$

and

$$x_1(u) = \int \sqrt{1 + (r')^2} \cos \varphi(u) du,$$

$$x_2(u) = \int \sqrt{1 + (r')^2} \sin \varphi(u) du.$$

Then the spacelike curve $c: \tilde{z}(u) = (x_1(u), x_2(u), r(u), 0)$ is a generating curve of a quasi-minimal rotational surface of elliptic type.

Conversely, any quasi-minimal rotational surface of elliptic type is locally constructed as above.

Quasi-minimal Rotational Surfaces in \mathbb{E}^4_2

Theorem 1.5 [G. Ganchev, V.M., Cent. Eur. J. Math., 2014]

Given a smooth function $f(u):I\subset\mathbb{R}\to\mathbb{R}$, define the functions

$$\varphi(u) = f'(u) \left(C + \eta \left(-\frac{1}{f'(u)} + \int \frac{du}{f(u)}\right)\right), \quad \eta = \pm 1, \ C = const,$$

and

$$x_1(u) = \int \varphi(u) du; \qquad g(u) = \int \frac{\varphi^2(u) - 1}{2f'(u)} du.$$

Then the curve $c: \tilde{z}(u) = x_1(u) e_1 + f(u) \xi_1 + g(u) \xi_2$ is a spacelike curve generating a quasi-minimal rotational surface of parabolic type.

Conversely, any quasi-minimal rotational surface of parabolic type is locally constructed as described above.

Quasi-minimal surfaces with pointwise 1-type Gauss map

Definition

A submanifold M of the Euclidean space \mathbb{E}^m (or pseudo-Euclidean space \mathbb{E}^m_s) is said to have **pointwise 1-type Gauss map** if its Gauss map G satisfies

$$\Delta G = \phi(G+C)$$

for some non-zero function ϕ on M and a constant vector C.

A pointwise 1-type Gauss map is called **proper** if the function ϕ is non-constant.

A submanifold with pointwise 1-type Gauss map is said to be of *first kind* if the vector *C* is zero. Otherwise, the pointwise 1-type Gauss map is said to be of *second kind*.

Flat quasi-minimal surfaces with pointwise 1-type Gauss map

Theorem 1.6. [V.M., N.C. Turgay, J. Geom. Phys.]

Let M_1^2 be a **flat quasi-minimal surface** in the pseudo-Euclidean space \mathbb{E}_2^4 . Then, M_1^2 has pointwise 1-type Gauss map if and only if it is congruent to the surface given by

$$z(u,v) = \left(\theta(u,v), \frac{u-v}{\sqrt{2}}, \frac{u+v}{\sqrt{2}}, \theta(u,v)\right)$$

for a smooth function θ .

Non-flat quasi-minimal surfaces with flat normal connection

Theorem 1.7 [V.M., N.C. Turgay, J. Geom. Phys.]

Let M_1^2 be a **quasi-minimal** surface in the pseudo-Euclidean space \mathbb{E}_2^4 with **flat normal connection** and **non-vanishing Gauss curvature**. Then, M_1^2 has **pointwise 1-type Gauss map** if and only if it belongs to one of the following two families:

- (i) a non-flat CMC-surface lying in $\mathbb{S}_2^3(r^2)$ for some r>0 such that the mean curvature vector H' of M in $\mathbb{S}_2^3(r^2)$ satisfies $\langle H', H' \rangle = -r^2$;
- (ii) a non-flat CMC-surface lying in $\mathbb{H}^3_1(-r^2)$ for some r>0 such that the mean curvature vector H' of M in $\mathbb{H}^3_2(-r^2)$ satisfies $\langle H', H' \rangle = r^2$.

Quasi-minimal surfaces with non-flat normal connection

Theorem 1.8. [V.M., N.C. Turgay, J. Geom. Phys.]

Let M_1^2 be a quasi-minimal surface in \mathbb{E}_2^4 with non-flat normal connection. Then, M_1^2 has pointwise 1-type Gauss map if and only if it is congruent to the surface given by

$$z(s,t)=-s\lambda_3(t)n_1'(t)-rac{3\sqrt{6}\lambda_3(t)\sqrt{-s\lambda_1(t)}}{\lambda_1^2(t)}n_1(t)+\xi(t)$$

for some smooth functions $\lambda_1 = \lambda_1(t)$, $\lambda_3 = \lambda_3(t)$ and some \mathbb{E}_2^4 -valued smooth functions $n_1(t)$, $\xi(t)$ satisfying the equations

$$\langle n_1, n_1 \rangle = \langle n'_1, n'_1 \rangle = \langle n_1, \xi' \rangle = \langle \xi', \xi' \rangle = 0, \qquad \langle n'_1, \xi' \rangle = \frac{1}{\lambda_3},$$

$$n''_1 - \left(\frac{\lambda'_3}{\lambda_3} - \frac{3\lambda'_1}{\lambda_1}\right) n'_1 + \frac{1}{\lambda_3} n_1 = 0,$$

and

$$\xi''' + \left(\frac{3\lambda_3'}{\lambda_3} - \frac{3\lambda_1'}{\lambda_1}\right)\xi'' + \frac{-3\lambda_1\left(\lambda_1'\lambda_3' + \lambda_3\lambda_1''\right) + 3\lambda_3{\lambda_1'}^2 + \lambda_1^2\left(2\lambda_3'' + 1\right)}{\lambda_1^2\lambda_3}\,\xi' = \zeta,$$

where $\zeta = \zeta(t)$ is the \mathbb{E}_2^4 -valued function given by

$$\zeta = \frac{8\lambda_1'^2\lambda_3^2 - 2\lambda_1\lambda_1''\lambda_3^2 + \lambda_1^2\lambda_3\lambda_3'' - 7\lambda_1\lambda_1'\lambda_3\lambda_3' + \lambda_1^2\lambda_3'^2}{81^{-1}\lambda_1^5\lambda_3}n_1 + \frac{\lambda_1\lambda_3' - 2\lambda_3\lambda_1'}{162^{-1}\lambda_1^4}n_1'.$$

Example 1.

Let ${\mathcal M}$ be the surface given by the following parametrization

$$z(s,t) = (-4s^{1/2}\cos t + s\sin t + \frac{1}{2}\cos t)e_1 - (4s^{1/2}\sin t + s\cos t - \frac{1}{2}\sin t)$$
$$-(4s^{1/2}\sin t + s\cos t + \frac{1}{2}\sin t)e_3 + (-4s^{1/2}\cos t + s\sin t - \frac{1}{2}\cos t)e_4.$$

 \mathcal{M} is a quasi-minimal Lorentz surface in \mathbb{E}_2^4 .

$$K = s^{-3/2}, \quad \varkappa = s^{-3/2}.$$

 \mathcal{M} is a surface with non-flat normal connection and non-parallel mean curvature vector field.

General Fundamental Theorem for quasi-minimal surfaces

Theorem 1.9

Let $\lambda_1(u, v)$, $\mu_1(u, v)$, $\lambda_2(u, v)$, $\mu_2(u, v)$, f(u, v) be smooth functions, defined in a domain \mathcal{D} , $\mathcal{D} \subset \mathbb{R}^2$, and satisfying the conditions

$$f > 0; \qquad \lambda_{1}\mu_{1}\lambda_{2}\mu_{2} \neq 0, \quad (u, v) \in \mathcal{D};$$

$$\left(\ln|\lambda_{1}\mu_{1}f^{4}|\right)_{v} = \frac{1}{\lambda_{1}}\left(\ln|\mu_{2}f^{2}|\right)_{u};$$

$$\left(\ln|\lambda_{2}\mu_{2}f^{4}|\right)_{u} = \frac{1}{\lambda_{2}}\left(\ln|\mu_{1}f^{2}|\right)_{v};$$

$$2ff_{uv} - 2f_{u}f_{v} = f^{4}(\lambda_{1}\mu_{2} + \mu_{1}\lambda_{2});$$

$$\left(\ln|\frac{\mu_{1}}{\mu_{2}}|\right)_{uv} = f^{2}(\lambda_{1}\mu_{2} - \mu_{1}\lambda_{2}).$$
(1)

Let $\{x_0, y_0, (n_1)_0, (n_2)_0\}$ be a pseudo-orthonormal frame at a point $p_0 \in \mathbb{E}_2^4$. Then, there exist a subdomain $\mathcal{D}_0 \subset \mathcal{D}$ and a unique quasi-minimal Lorentz surface $M_1^2 : z = z(u, v), (u, v) \in \mathcal{D}_0$ passing through the point p_0 .

Example 2.

Let \mathcal{M} be a surface in the Minkowski 4-space given by:

$$\mathcal{M}: z(u,v) = \left(1 + \frac{u^2 + v^2}{2}\right) e_1 + \frac{u^2 + v^2}{2} e_2 + u e_3 + v e_4.$$

By direct computation it can be shown that \mathcal{M} is a quasi-minimal (marginally trapped) surface in \mathbb{E}_1^4 with parallel normal bundle.

Благодаря за вниманието!