
Ñåêöèÿ �Àíàëèç, Ãåîìåòðèÿ è Òîïîëîãèÿ�

ÃÎÄÈØÍÀ ÎÒ×ÅÒÍÀ ÍÀÓ×ÍÀ ÑÅÑÈß

5 äåêåìâðè 2024

ÂÚÐÕÓ ÅÄÈÍ ÊËÀÑ ÌÀËÊÎ ÈÇÂÅÑÒÍÈ,

ÍÎ ÂÀÆÍÈ ÑÏÅÖÈÀËÍÈ I-ÔÓÍÊÖÈÈ

Âèðæèíèÿ Êèðÿêîâà è Éîðäàíêà Ïàíåâà-Êîíîâñêà

Íà ïàìåòòà íà íàøèòå ó÷èòåëè:
ïðîôåñîðèòå Ïåòúð Ðóñåâ è Èâàí Äèìîâñêè



Annual Session of
“Analysis, Geometry and Topology” Section,

5 December 2024

ON A CLASS OF NOT WELL KNOWN,

BUT IMPORTANT SPECIAL I-FUNCTIONS

V. Kiryakova, J. Paneva-Konovska
IMI – Bulgarian Academy of Sciences

To the memory of our teachers:
Profs. Peter Rusev and Ivan Dimovski

1 / 28



2 / 28



Definition. The Fox H-function (Ch. Fox (1961) is a generalized
hypergeometric function, defined by means of the Mellin-Barnes
type contour integral in the complex plane

Hm,n
p,q

[
z

∣∣∣∣ (ai ,Ai )
p
1

(bj ,Bj)
q
1

]
=

1

2πi

∫
L

Hm,n
p,q (s) z−sds, z 6= 0, (1)

where Hm,n
p,q (s)=

m∏
j=1

Γ(bj +Bjs)
n∏

i=1
Γ(1−ai−Ai s)

q∏
j=m+1

Γ(1−bj−Bjs)
p∏

i=n+1
Γ(ai +Ai s)

,

with a contour L (3 types); the orders (m, n, p, q) non negative
integers so that 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters
Ai > 0,Bj > 0 are positive, and ai , bj , i = 1, ..., p; j = 1, ..., q are
arbitrary complex such that Ai (bj +l) 6= Bj(ai−l ′−1),
l , l ′ = 0, 1, 2, ...; i = 1, ..., n; j = 1, ...,m. Details on the types of
contours L and properties of the H-function – in many
contemporary handbooks on SF, where its behaviour is described
via the parameters: R, ∆, ∇, µ, ... For ∀Ai = Bj = 1, the
H-function reduces to a Meijer G -function, then to the classical SF
(“SF of Mathematical Physics”). 3 / 28



Most of the SF of FC, being H-functions, are practically cases of
the Wright (Fox-Wright) generalized hypergeometric functions

pΨq

[
(a1,A1), ..., (ap,Ap)
(b1,B1), ..., (bq,Bq)

∣∣∣∣ z]=
∞∑
k=0

Γ(a1+kA1) . . . Γ(ap+kAp)

Γ(b1+kB1) . . . Γ(bq+kBq)

zk

k!

= H1,p
p,q+1

[
−z
∣∣∣∣ (1− a1,A1), . . . , (1− ap,Ap)

(0, 1), (1− b1,B1), . . . , (1− bq,Bq)

]
. (2)

Denote: R =
p∏

i=1
A−Ai
i

q∏
j=1

B
Bj

j , ∆ =
j∑

k=1

Bj −
p∑

i=1
Ai . If ∆ > −1,

the pΨq-function is an entire function of z ∈ C, but if ∆ = −1,
the series is absolutely convergent in the disk {|z |<R}, while ....

If all A1 = · · · = Ap = 1,B1 = · · · = Bq = 1, the Wright g.h.f.
reduces to the generalized hypergeometric pFq-function, which
itself is a case of the Meijer G -function,

pΨq

[
(a1, 1),. . ., (ap, 1)
(b1, 1),. . ., (bq, 1)

∣∣∣∣ z] = c pFq(a1,. . ., ap; b1,. . ., bq; z)

=
∞∑
k=0

(a1)k ...(ap)k
(b1)k ...(bq)k

zk

k!
=G 1,p

p,q+1

[
−z
∣∣∣∣ 1−a1, ..., 1−ap

0, 1−b1, ..., 1−bq

]
; c = ...
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The Mittag-Leffler (ML) functions, when α > 0 is not integer or
rational index, are the simplest examples of pΨq-functions that are
not pFq- and G -functions,

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
; α = 1 : Eα(z), (3)

E τα,β(z) =
∞∑
k=0

(τ)k
Γ(αk + β)

zk

k!
(Prabhkar f.). (4)

And the multi-index ML functions (Kiryakova, 1996 → / also
Luchko)

E(αi ),(βi ) =
∞∑
k=0

zk

Γ(α1k+β1) . . . Γ(αmk+βm)
, (5)

and (Paneva-Konovska, 2011 →)

E
(τi ),m
(αi ),(βi )

(z)=
∞∑
k=0

(τ1)k ...(τm)k
Γ(α1k+β1)...Γ(αmk+βm)

zk

(k!)m
, (6)

include almost all the SF of FC (appearing as solutions of FO
models). A very long list of such SF has been provided as evidence
in our survey papers.
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However, another SF related to FC, the Le Roy function (1900)
attracted the attention of our FC colleagues ONLY recently,

exp(z)=
∞∑
k=0

zk

k!
−→ (Le Roy) Fγ(z) =

∞∑
k=0

zk

(k!)γ

and together with newly introduced their ML-type analogues:

−→ (MLR: Gerhold, Garra-Polito) F
(γ)
α,β(z) =

∞∑
k=0

zk

[Γ(αk + β)]γ

(γ>0, γi>0) −→ (3m-MLR: Rogosin) F
(γ)m
(α,β)m

(z)=
∞∑
k=0

zk

m∏
i=1

[Γ(αik+βi )]γi

happen NOT to be H-functions and pΨq-functions !
The above SF have been studied, since 2012 to 2021, by:

Gerhold, Garra, Polito, Garrappa, Mainardi, Rogosin, Orsingher,
Gorska, Horzela, Simon, etc.

Then, from our 3m-multi-ML and the above 3m-MLR functions,
since 2022, we went further to a new class of SF of Le Roy type,
as follows:
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Definition. Multi-index Mittag-Leffler-Prabhakar functions of Le
Roy type (multi-MLPR), suppose all the 4m parameters are > 0:

Fm(z) := Fγi ;mαi ,βi ;τi
(z) (7)

=
∞∑
k=0

(τ1)k . . . (τm)k
(k!)m

· zk

[Γ(α1k + β1)]γ1 . . . [Γ(αmk + βm)]γm

=
∞∑
k=0

ck z
k , with ck =

m∏
i=1

{
Γ(k+τi )

Γ(k+1)
· 1

Γ(τi )
· 1

[Γ(αik+βi )]γi

}
.

Several basic analytical properties of (7) are proposed in our
recent papers: 2022-2023 by VK-JPK + Rogosin-Dubatovskaya,
2022-2024 by VK-JPK.

Theorem. (2023) Suppose

∀i = 1, ...,m : αi>0, βi>0, γi>0, τi>0, and ⇒
m∑
i=1

αiγi > 0. The

multi-index MLPR-function (7) is an entire function of the
complex variable z of order ρ and type σ:

ρ =
1

α1γ1 + · · ·+ αmγm
, and σ =

1

ρ

(
m∏
i=1

(αi )
−αiγi

)ρ
. (8)
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In Sonix, one can find a list of our joint (VK-JPK) and
self-authored (VK, JPK) indexed (Scopus - WoS) publications and
talks (abroad and in BG) on the results

for this new class of SFs and their relations to the I -functions
(commented on next slides), in the last 2 years:

2023: 6 papers / 5 talks
2024: 5 papers / 8 talks

and their citations.
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Definition. The so-called I -function was defined by Rathie
(1997), by means of a kind of Mellin-Barnes type integral

Im,np,q

[
z

∣∣∣∣ (ai ,Ai , αi )
p
1

(bj ,Bj , βj)
q
1

]
=

1

2πi

∫
L

Im,np,q (s) z−sds, z 6= 0,

with Im,np,q (s)=

m∏
j=1

Γβj (bj +Bjs)
n∏

i=1
Γαi (1−ai−Ai s)

q∏
j=m+1

Γβj (1−bj−Bjs)
p∏

i=n+1
Γαi (ai +Ai s)

.

(9)
Note that if ∀αi = ∀βj = 1, i = 1, ..., p, j = 1, ..., q, this is the Fox
H-function. But in general, these are NOT positive integers. Then,
we have multi-valued functions Γ whose singularities are now
branch points. Some more simple case of this SF, is the H-function
of Inayat-Hussain (1987), where in particular some of the αi , βj are
equal to 1, namely: αi = 1, i = n+1, ..., p and βj = 1, j = 1, ...,m:

H
m,n
p,q

[
z

∣∣∣∣ (ai ,Ai , αi )
p
1

(bj ,Bj , βj)
q
1

]
=

1

2πi

∫
L

m∏
j=1

Γ1(bj +Bjs)
n∏

i=1
Γαi (1−ai−Ai s)

q∏
j=m+1

Γβj (1−bj−Bjs)
p∏

i=n+1
Γ1(ai +Ai s)

z−sds.
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In our very recent papers (2024), we have introduced a
generalization of the Fox-Wright function

pΨq

[
(a1,A1), ..., (ap,Ap)
(b1,B1), ..., (bq,Bq)

∣∣∣∣ z] =
∞∑
k=0

Γ(A1k + a1)...Γ(Apk + ap)

Γ(B1k + b1)...Γ(Bqk + bq)

zk

k!
.

Definition. We define the generalized Fox–Wright function by
the power series

pΨ̃q

[
(aj ,Aj ;αj)

p
j=1

(bi ,Bi ;βi )
q
i=1

∣∣∣∣ z] =
∞∑
k=0

p∏
j=1

Γαj (Ajk + aj)

q∏
i=1

Γβi (Bik + bi )

· z
k

k!
, (10)

with arbitrary real or complex parameters aj , bi , positive Aj , Bi and
additional “fractional” power parameters αj > 0, βi > 0,
j = 1, ..., p, i = 1, ..., q.

The behavior and properties of this new SF are characterized by
the parameters:

µ̃ = 1 +

q∑
i=1

βiBi −
p∑

j=1

αjAj , R̃ =

q∏
i=1

BβiBi
i /

p∏
j=1

A
αjAj

j . (11)

Here, µ̃ indicates when the series in (10) represents an entire
function, or is an analytic in |z | < R̃, or converges only at z = 0.10 / 28



Namely,

• If µ̃ > 0, then the series (10) defines an entire function (that
is, absolutely convergent for all z ∈ C).
• If µ̃ = 0, then the series (10) defines an analytical function in

the open disk |z | < R̃.
• If µ̃ < 0, then the series (10) converges only at the point 0.

We are mostly interested in the case µ̃ > 0 when pΨ̃q is an
entire function.

Theorem. (2024) Let pΨ̃q be the generalized Fox–Wright
function (10) with all positive parameters aj , Aj , αj , bi , Bi , βi ,
and let µ̃ > 0. Then, the order ρ̃ and type σ̃ of the entire function
(10) are

1

ρ̃
= 1 +

q∑
i=1

βiBi −
p∑

j=1

αjAj = µ̃, (12)

respectively

σ̃ = µ̃

 p∏
j=1

A
αjAj

j

1/µ̃

/

(
q∏

i=1

BβiBi
i

)1/µ̃

. (13)

Let αj = 1, βi = 1. Then, pΨ̃q ⇒ pΨq; µ̃ = µ, R̃ = R.
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The generalized Fox–Wright function (10) is representable in terms
of the following I - and H-functions:

pΨ̃q

[
(aj ,Aj , αj)

p
j=1

(bi ,Bi , βi )
q
i=1

∣∣∣∣ z] = H
1,p
p,q+1

[
−z
∣∣∣∣ (1− aj ,Aj , αj)

p
1

(0, 1), (1− bi ,Bi , βi )
q
1

]

= I 1,pp,q+1

[
−z
∣∣∣∣ (1− aj ,Aj , αj)

p
1

(0, 1, 1), (1− bi ,Bi , βi )
q
1

]
. (14)

Then, one observes the natural parallel with the representation of
the Fox–Wright function (2) by a H-function:

pΨq

[
(a1,A1), ..., (ap,Ap)
(b1,B1), ..., (bq,Bq)

∣∣∣∣ z] = pΨ̃q

[
(a1,A1, 1), ..., (ap,Ap, 1)
(b1,B1, 1), ..., (bq,Bq, 1)

∣∣∣∣ z]

= H1,p
p,q+1

[
−z
∣∣∣∣ (1− aj ,Aj)

p
1

(0, 1), (1− bi ,Bi )
q
1

]
. (15)

Let us discuss some particular cases of the I -functions from which
these arose initially, in fractional order models, say in statistical
physics, statistical mechanics, stochastics.
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Feynman integrals: Rathie introduced the I -function in the goals
to cover some important functions of Applied Mathematics that
are not included in the H-functions, among them are some
Feynman integrals. Inayat-Hussain demonstrated the usefulness of
such integrals in derivation of new transformation, summation and
reduction formulae for single- and multiple-variable hypergeometric
series. His results in evaluating Feynman integrals that arise in
perturbation calculations of the equilibrium properties of a
magnetic model of phase transitions were based on the function

g1(z)=(2π)−d
∫
|p|≤1

dp|p|2η−d [ln(1/|p|)]m|1 + z1/2p|−2γ

= K̃ ·
∞∑
k=0

(γ)k(γ − µ/2)k zk

(1 + µ/2)k(η + k)1+m k!
.

But we can rewrite this in the denotations of the Ψ̃-function:

= Const·3Ψ̃2

[
(γ, 1, 1), (γ − µ/2), 1, 1), (η, 1, 1 + m)

(1µ/2, 1, 1), (η + 1, 1, 1 + m)

∣∣∣∣ z] , (16)

that is as an I -function. Let us recall that m can be a non-integer!

13 / 28



The Gaussian model of phase transitions in equilibrium statistical
mechanics. The free energy of such a model on a Bravais lattice in
d dimensions was considered by Inayat-Hussain and expressed in
terms of a series, where the variable ε = βc/β − 1 is a reduced
temperature interval and βc = 2ξ/J is the critical temperature:

βF (d ; ε) = −2−2−d(1 + ε)−2
∞∑
k=0

(1)k [(3/2)k ]d

[(2)k ]1+d (1 + ε)2k
.

Inayat-Hussain presented this Gaussian model’s free energy by the
H-function:

βF (d ; ε)=− (1+ε)−2

4πd/2
H

1,3
3,2

[
−(1+ε)−2

∣∣∣∣ (0, 1, 1), (0, 1, 1), (−1/2, 1, d)
(0, 1, 1)(−1, 1, 1 + d)

]
.

Having in mind the above series representation, we can write it in
terms of the Ψ̃-function as follows, with NON-integer d :

βF (d ; ε)=const · 2Ψ̃1

[
(1, 1, 2), (3/2, 1, d)

(2, 1, 1 + d)

∣∣∣∣ (1 + ε)−2
]
. (17)
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Attention: It happens that some other important SF are NOT
H-functions and pΨq-functions, but can be presented in terms of
the I - and H-functions. This was an argument in the initial works
by Inayat-Hussain (with title: “... hypergeometric series derivable
from Feynman integrals”) and by Rathie, and we stuck on some
hints that other more popular SF in Maths fall in the scheme of the
I -functions, as: the polylogaritm function, the Riemann ζ-function,
Mathiew series, etc. Just for example, the polylogarithm function

Liα(z) =
∞∑
k=1

zk

kα
, |z | < 1, α ∈ C,

can be identified as such a function. Namely, a Mellin-Barnes type
integral representation gives a H-function (then, also I -f.):

Liα(z) = − 1

2πi

1/2+i∞∫
1/2−i∞

Γα+1(s) Γ(1− s)

Γα(1 + s)
(−z)s ds

= −H
1,1
1,2

[
− z

∣∣∣∣ (1, 1, α + 1)
(1, 1, 1), (0, 1, α)

]
, α > 0, L = {c−i∞, c+i∞}.

(All singularities of the Gamma’s in numerator are to the left of
s =0 and to the right of s =1, and one can take c = 1/2!) 15 / 28



Next example: The generalized Hurwitz-Lerch Zeta function:

Φ
(ρ,σ,κ)
λ,ν,µ (z , α, b) =

∞∑
n=0

(λ)ρn(µ)σn
(ν)κn n!

· zn

(n + b)α
, |z | < ρ∗. (18)

According to Srivastava-Saxena-Pogány-Saxena (2011), it has the
following Mellin-Barnes contour integral representation:

Φ
(ρ,σ,κ)
λ,ν,µ (z , α, b) =

Γ(ν)

Γ(λ)Γ(µ)

×
∫
L

Γ(−s)Γ(λ+ ρs)Γ(µ+ σs) Γα(s + b)

Γ(ν + κs) Γα(s + b + 1)
(−z)α ds, (19)

for |arg(−z)| < π, and path of integration L = (c − i∞, c + i∞)
that separates the poles of Γ(−s) , Γ(λ+ ρs), Γ(µ+ σs), Γ(s + b).
Then, the relation with the H-function (and I -f.) can be written:

Φ
(ρ,σ,κ)
λ,ν,µ (z , α, b) =

Γ(ν)

Γ(λ)Γ(µ)

× H
1,3
3,3

[
−z
∣∣∣∣ (1− λ, ρ, 1), (1− µ, σ, 1), (1− b, 1, α)

(0, 1), (1− ν, κ, 1), (−b, 1, α)

]
. (20)

Several important special cases are considered, incl. the Riemann
Zeta function ζ(α)=

∑∞
0 zn/nα (with z = 1, b = 0, ...), etc. 16 / 28



Our hypothesis was, now proved (our papers of 2024), that
under suitable conditions on the contour and location of the
singularities of the Γ-functions, the Le Roy type functions can also
be written in terms of I - and in particular, H-functions and as
generalized Fox-Wright functions pΨ̃q. Namely:

• the original Le Roy function:

F (γ)(z) = I 1,11,2

[
−z
∣∣∣∣ (0, 1, 1)

(0, 1, 1), (0, 1, γ)

]
= 1Ψ̃1

[
(1, 1, 1)
(1, 1, γ

∣∣∣∣ z] ;

• the M-L type Le Roy function (Gerhold, Garra-Polito,...):

F
(γ)
α,β(z) = I 1,11,2

[
−z
∣∣∣∣ (0, 1, 1)

(0, 1, 1), (1− β, α, γ)

]
= 1Ψ̃1

[
(1, 1, 1)
(β, α, γ

∣∣∣∣ z] ;

• the Prabhakar type Le Roy function (Paneva-Konovska):

F
(γ)
α,β, τ (z) = I 1,11,2

[
−z
∣∣∣∣ (1− τ, 1, 1)

(0, 1, 1), (1− β, α, γ)

]
= Γ(τ) 1Ψ̃1

[
(τ, 1, 1)
(β, α, γ

∣∣∣∣ z] ;
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also, the multi-index M-L function of Le Roy type (Rogosin, 2022):

F
(γi )

m
1

(αi )
m
1 ,(βi )

m
1

(z)= I 1,11,m+1

[
−z
∣∣∣∣ (0, 1, 1)

(0, 1, 1), (1−βi , αi , γi )
m
1

]
=H

1,1
1,m+1(−z).

Compare: E(αi )
m
1 ,(βi )

m
1

(z)=H1,1
1,m+1

[
−z
∣∣∣∣ (0, 1)

(0, 1), (1−βi , αi )
m
1

]
, VK, H-f.

Theorem. (2023) Let ∀αi , βi , τi > 0, i =1, ...,m,
∞∑
k=0

αiγi>0, we

have for our multi-index M-L functions of Le Roy type

Fm(z) := Fγi ;mαi ,βi ,τi
(z) =

∞∑
k=0

(τ1)k . . . (τm)k
m∏
i=1

Γ γi (αik + βi )

· zk

(k!)m
, that: (21)

Fm(z) :=Fγi ;mαi ;βi ; τi
(z)=T ·mΨ̃2m−1

[
(τi , 1, 1)m1

(1, 1, 1)(m−1)−times, (βi , αi , γi )
m
1

∣∣∣∣ z]
= T · H1,m

m,2m

[
− z

∣∣∣∣ (1− τi , 1, 1)m1
(0, 1)m−times, (1− βi , αi , γi )

m
1

]
(22)

= T · I 1,mm,2m

[
− z

∣∣∣∣ (1− τi , 1, 1)m1
(0, 1, 1)m−times, (1− βi , αi , γi )

m
1

]
.

where T :=1/(
m∏
i=1

Γ(τi )().
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Consider now a simple multi-index case with m = 2. Pogany
considered the problem for a closed-form definite integral
expression for the COM–Poisson renormalization constant. He
mentioned, as an example only, a special function of the following
form that happens to be a generalized Fox-Wright function:

Fα,β(p,q;r ,s)(z)=
∞∑
k=0

zk

[Γ(pk+q)]α[Γ(rk+s)]β
=1Ψ̃2

[
(1, 1, 1)

(q, p, α), (s, r , β)

∣∣∣∣ z] .
It happens also that the original Le Roy function

(m = 1, α = β = 1) plays a practical role in describing other
real-world processes. For example, a query has been raised by
Kolokoltsov about the simplest case of the Le Roy function with
index γ = 1/2:

F (1/2)(z) =
∞∑
k=0

zk

(k!)1/2
,

what kind of, if known, special function is this? Then, in a recent
paper (2021), he recognized it and emphasized that this function
plays the same role for stochastic equations as the exponential and
Mittag-Leffler functions for deterministic equations. 19 / 28



Related “Eigen”-operators for the new SF:

Gelfond–Leontiev operators and new operators of FC

In analysis, linear algebra, physics, quantum mechanics, etc., the
notions related to the prefix “Eigen” (from the German word “self”
or “own”) play important roles. An eigenfunction is a function
that, when acted on by an operator, yields a scalar multiple of the
function itself. The scalar is called the eigenvalue. Aside from the
other analytical properties of the SF, and evaluation of their
images under integral transforms and operators of FC, it is an
important but often still open problem to determine corresponding
linear integral L and differential operators D that transform a
function f into itself multiplied by a scalar, e.g., D f = λ f . For
shortness, we call such operators “eigen“-operators for f .

It happens that an useful tool to resolve this (generally open)
problem for some classes of SF is the notion of Gelfond–Leontiev
operators (G-L operators) for generalized integration and
differentiation, introduced by these authors in 1951. Up to now, we
have used this theory to propose integral and differential operators
for which the ML and multi-ML functions are eigenfunctions. 20 / 28



Definition. (Gelfond-Leontiev, 1951) Let the function

ϕ(λ) =
∞∑
k=0

ϕkλ
k be an entire function with a growth (order

ρ > 0 and type σ 6= 0), such that lim
k→∞

k
1
ρ k
√
|ϕk | = (σeρ)

1
ρ . Then,

for an analytic function f the operation

f (z) =
∞∑
k=0

akz
k Dϕ7−→ Dϕf (z) =

∞∑
k=1

ak
ϕk−1
ϕk

zk−1, (23)

is called a G-L operator of generalized differentiation with respect
to the function ϕ(λ). And the corresponding G-L operator of
generalized integration can be also introduced:

f (z) =
∞∑
k=0

akz
k Lϕ7−→ Lϕf (z) =

∞∑
k=0

ak
ϕk+1

ϕk
zk+1. (24)

Evidently, DϕLϕf (z) = f (z). It happens also that the function ϕ is
eigenfunction of the G-L operator generated by itself.

The classical diff./integr. are generated by ϕ(λ) = expλ; and for
the ML function and multi-index ML functions we have constructed
corresp. G-L operators, defined by series of the above forms. Then,
for these G-L gen. integr. we provided also representations as FC
operators with kernels H1,0

1,1 , resp. Hm,0
m,m (see next). 21 / 28



Now: we construct G-L operators D and L, generated by the Le

Roy type functions - in the case of F
(γ)m
(α,β)m

, by means of their

coefficients ϕk = 1/
∏m

i=1 Γγi (αik + βi ). For f (z)=
∞∑
k=0

akz
k :

D f (z) := DmMLR f (z)=
∞∑
k=1

akz
k−1 ·

m∏
i=1

Γγi (αik + βi )

Γγi (αik + βi − αi )
, (25)

L f (z) := LmMLR f (z) =
∞∑
k=0

akz
k+1 ·

m∏
i=1

Γγi (αik + βi )

Γγi (αik + βi + αi )
. (26)

We have proved the following eigenfunction relation:

DF
(γ)m
(α,β)m

(λz)= λF
(γ)m
(α,β)m

(λz), λ 6= 0. (27)

This result can be interpreted that: the multi-index ML functions
of Le Roy type (mMLR) appear as solutions of differential
equations of the form (27), and as will be shown below, these are
DEs of fractional multi-order (α1, ..., αm) !

For the G-L integration the corresponding relation is

LF
(γ)m
(α,β)m

(λz) =
1

λ
F
(γ)m
(α,β)m

(λz)− 1/(λ
m∏
i=1

Γγi (βi )), λ 6= 0. (28)
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Theorem. (2024) The G-L integration operator L, generated by

means of the Le Roy type function F
(γ)m
(α,β)m

as in the series (26),
can be represented also by means of the integral operator

Im f (z)=LmMLR f (z)=z

1∫
0

Im,0m,m

[
σ

∣∣∣∣ (βi , αi , γi )
m
1

(βi − αi , αi , γi )
m
1

]
f (zσ)dσ.

(29)

This operator can be interpreted as a kind of a generalized
fractional integration of multi-order (α1, ..., αm).

Note that according to the theory of the I -functions, the singular
kernel in (29) is a well defined Im,0m,m-function, analytic in the unit
disc |z | < 1 that vanishes for |z | > 1 (similarly to the behavior of
the Hm,0

m,m-function), and under the assumed conditions on the
parameters this improper integral is convergent.
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Specially for m = 1, we can consider this operator as an analogue
of the Erdélyi-Kober fractional integral, to be of order α > 0:

I1 f (z)=LMLR f (z)=z

1∫
0

I 1,01,1

[
σ

∣∣∣∣ (β, α, γ)m1
(β − α, α, γ)

]
f (zσ)dσ. (30)

Analogy with: Erdélyi-Kober (E-K) fractional integration operator:

I γ,δβ f (z) =
1

Γ(δ)

1∫
0

(1− t)δ−1tγf (zt1/β) dt (31)

=

1∫
0

H1,0
1,1

[
σ

∣∣∣∣∣ (γ + δ + 1− 1
β ,

1
β )

(γ + 1− 1
β ,

1
β )

]
f (zσ), of order δ > 0.

The E-K integral of “classical” FC, reduces to the R-L fractional
integral for γ = 0, β = 1, namely: I 0,δ1 f (z) = z−δ I δf (z). And the
corresponding Erdélyi-Kober (E-K) fractional derivative, as
introduced in Kiryakova (1994, Ch.2), has the form

Dγ,δ
β f (z) = Dη I

γ+δ,η−δ
β f (z), with n − 1 < δ ≤ η, η ∈ N,

and Dη :=

η∏
j=1

(
1

β
z
d

dz
+γ+j), a polynomial P(

d

dz
).
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Generalized FC (Kiryakova, 1994): Let m ≥ 1 be an integer;
δi ≥ 0, γi ∈ R, βi > 0, i = 1, . . . ,m. In analogy with the
definition of the E-K integral, consider the sets of parameters:
δ = (δ1 ≥ 0, ..., δm ≥ 0) as a multi-order of fractional integration,
γ = (γ1, ..., γm) as a multi-weight, and additional multi-parameter
β = (β1 > 0, ..., βm > 0). The integral operator defined as follows:

I
(γk ),(δk )
(βk ),m

f (z) =

1∫
0

Hm,0
m,m

[
t

∣∣∣∣∣ (γi + δi + 1− 1
βi
, 1
βi

)m1
(γi + 1− 1

βi
, 1
βi

)m1

]
f (zt)dt,

(32)
if

m∑
i=1

δi > 0; and I
(γk ),(δk )
(βk ),m

f (z) = f (z) for ∀δi = 0, is called a

generalized (m-tuple) fractional integral of multi-order
(δ1 ≥ 0, . . . , δm ≥ 0).

The generalized fractional derivatives D
(γk ),(δk )
(βk ),m

, corresponding to

(32), of multi-order (δ1, ..., δm) are also introduced, in a way

similar to that for the R-L Dδ and E-K Dγ,δ
β FDs, but with more

complicated differ-integral representations.
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For m = 1, the g.f.i. (32) is the “classical” E-K integral (31).

The main feature of the operators (32) defined by means of
single integrals involving H-functions (or Meijer’s G -functions in
the simpler case of equal βi = β > 0, i = 1, ...,m) is that they can
be equivalently represented by means of commutative compositions
of classical E-K integrals (m = 1):

I
(γk ),(δk )
(βk ),m

f (z) =

[
m∏
i=1

I γi ,δiβi

]
f (z)

=

1∫
0

. . .

1∫
0

[
m∏
i=1

(1− ti )
δi−1tγii

Γ(δi )

]
f

(
zt

1
β1
1 . . . σ

1
βm
m

)
dt1 . . . dtm ,

(33)
without special functions involved in kernel.

The frequent appearance of compositions like (33) in problems
related to applications, combined with the simple but effective
tools of the theory of the kernel SFs (H- and G -functions) in
definition (32), explains the wide usage of the operators of the
GFC.
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Return now to the G-L operators generated by the Le Roy type

functions F
(γ)m
(α,β)m

(z), and their integral representations (29) as in

the previous theorem. In the case m = 1 the operators I1 can be
considered as analogues of the Erdélyi-Kober operators ! And, it
happens that the following composition/decomposition property
for Im and I1, is analogous to the mentioned one for the GFC,
where the gen. fr. integrals with Hm,0

m,m were represented also as
commutable compositions of m single E-K fractional integrals.

Theorem. (2024) For entire functions f (z),

Im f (z) =

[
m∏
i=1

I1i

]
f (z) = I1m

{
I1m−1 · · ·

[
I11
]}

f (z). (34)

The above composition is commutable. The analogues of the E-K
fractional integrals of order αi > 0 have the form

I1i f (z) = z

1∫
0

I 1,01,1

[
σ

∣∣∣∣ (βi , αi , γi )
(βi − αi , αi , γi )

]
f (zσ)dσ. (35)
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We may consider the operators in (29) and (34), also with more
general parameters, as new kind of generalized fractional integrals,
with semigroup and other operational properties, typical for the FC.

Say for m = 1, the more general form of such integral operators
(as analogues of E-K integrals), but depending on 4 (instead of 3)
parameters, can be considered in the form:

Iµ,αβ,γ f (z) =

1∫
0

I 1,01,1

[
σ

∣∣∣∣ (µ+ α− β, β, γ)
(µ− β, β, γ)

]
f (zσ)dσ,

for order α > 0; and for α = 0: Iµ,0β,γf (z) := f (z). It is easy to
check that the semi-group property is then satisfied OK:

Iµ+α1,α2

β,γ Iµ,α1

β,γ = Iµ,α1+α2

β,γ , α1 > 0, α2 > 0,

in the form very similar to that for the E-K fractional integrals.
The case of arbitrary m ≥ 1, for GFC, can be also considered for:

mI(µi ),(αi )
(βi ),(γi )

f (z) =

1∫
0

Im,0m,m

[
σ

∣∣∣∣ (µi + αi − βi , βi , γi )m1
(µi − βi , βi , γi )m1

]
f (zσ)dσ.

A list of OPEN problems can been also discussed!
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