Metric embeddings of Laakso graphs into Banach spaces (S. J. Dilworth, Denka Kutzarova, and Svetozar Stankov)

Super-reflexive Banach spaces

Definition

Let X_0 , Y_0 be n-dimensional normed spaces. The Banach-Mazur distance from X_0 to Y_0 is defined by

$$d_{BM}(X_0, Y_0) = \inf\{\|T\| \cdot \|T^{-1}\| \colon T \colon X_0 \to Y_0\}.$$

Definition

Let X and Y be infinite-dimensional Banach spaces. Y is finitely representable in X if $\forall \epsilon > 0$ and \forall finite-dimensional subspaces Y_0 of $Y \exists$ a finite-dimensional subspace X_0 of X with

$$d_{BM}(X_0, Y_0) \leqslant 1 + \epsilon$$
.

Definition (James, 1972)

X is super-reflexive if

Y is finitely representable in $X \Rightarrow Y$ is reflexive (i.e., $Y = Y^{**}$).

Remark

- ▶ super-reflexive ⇒ reflexive
- ℓ_p and $L_p[0,1]$ are super-reflexive $\Leftrightarrow 1$
- $(\sum_{n\geq 1}\ell_1^n)_2$ is reflexive but not super-reflexive

Characterizations of super-reflexive spaces

Theorem (Enflo, 1972)

X is super-reflexive if and only if X is isomorphic to a uniformly convex Banach space.

Theorem (James-Schaffer, 1972, Schaffer-Sundaresan, 1970)

X is super-reflexive if and only if X is J-convex:

$$\exists m \geqslant 2, \, \varepsilon > 0 \text{ such that } \forall e_1, \dots, e_m, \, \|e_i\| \leqslant 1,$$

$$\min_{1 \leq j \leq m} \|e_1 + \dots + e_j - e_{j+1} - \dots - e_m\| < m - \varepsilon.$$
 (1)

Bilipschitz embeddings of metric spaces

Definition

A metric space M bilipschitz embeds in a Banach space X with distortion D if $\exists f: M \to X$ s.t.

$$\frac{1}{D}\rho(x,y)\leqslant \|f(x)-f(y)\|\leqslant \rho(x,y) \qquad (x,y\in M).$$

Characterization of super-reflexivity: Binary trees

Definition

For $n \ge 1$, the binary tree $B_n := \{\emptyset\} \cup_{i=1}^n \{0,1\}^i$ equipped with the shortest path metric.

Theorem (Bourgain, 1986)

X is not superreflexive $\Leftrightarrow \exists D \geqslant 1$ and maps $f_n \colon B_n \to X$ s.t.

$$\frac{d(s,t)}{D} \leqslant \|f_n(s) - f_n(t)\| \leqslant d(s,t),$$

i.e., B_n bilipschitz embeds into X with uniform distortion.

Diamond graphs

- ▶ The diamond graphs D_n are defined recursively:
- $ightharpoonup D_0$ is a single edge.
- ▶ D_n is obtained from D_{n-1} by replacing each edge by a 'diamond'.
- ▶ Equip D_n with the shortest path metric.

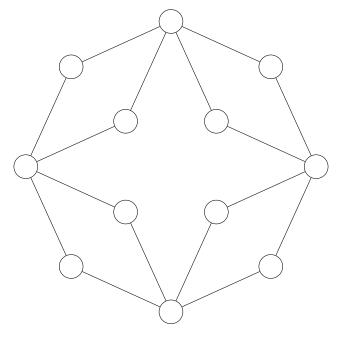


Figure: Diamond D_2 .

Laakso graphs

- ▶ The Laakso graphs \mathcal{L}_n are defined recursively:
- $ightharpoonup \mathcal{L}_0$ is a single edge.
- $ightharpoonup \mathcal{L}_n$ is obtained from \mathcal{L}_{n-1} by replacing each edge by a copy of \mathcal{L}_1
- ▶ Equip \mathcal{L}_n with the shortest path metric.

Theorem (Ostrovska-Ostrovskii, 2017)

Laakso graphs do not uniformly bilipschitz embed into diamond graphs.

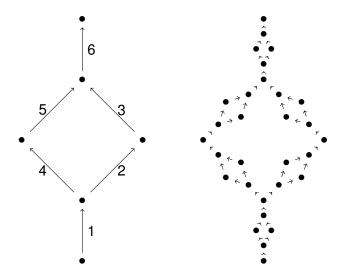


Figure: The Laakso graphs \mathcal{L}_1 and \mathcal{L}_2

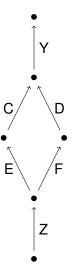


Figure: The Laakso graph \mathcal{L}_n

Characterization of super-reflexivity: diamond and Laakso graphs

Theorem (Johnson-Schechtman, 2009)

Let X be a Banach space. Then X is not superreflexive $\Leftrightarrow \exists D \geqslant 1$ and maps $f_n \colon D_n \to X$ or $f_n \colon \mathcal{L}_n \to X$ such that

$$\frac{d(s,t)}{D} \leqslant \|f_n(s) - f_n(t)\| \leqslant d(s,t),$$

i.e., D_n and \mathcal{L}_n bilipschitz embed into X with uniform distortion.

Further graph characterizations

Suppose *X* is not super-reflexive. Let $\varepsilon > 0$

Theorem (Ostrovskii-Randrianantoanina, 2017)

The k-branching diamond $D_{n,k}$ and Laakso $\mathcal{L}_{n,k}$ graphs bilipschitz embed into X with uniform distortion $8 + \varepsilon$.

Theorem (Swift, 2018)

Bundle graphs generated by a finitely-branching bundle graph bilipschitz embed with distortion independent of the branching number. Parasol graphs embed with distortion $8 + \varepsilon$.

Low distortion embeddings of diamond graphs D_n

Suppose *X* is not super-reflexive. Let $\varepsilon > 0$

Theorem (folklore)

The binary trees B_n bilipschitz embed into X with uniform distortion $1 + \varepsilon$ (B_n embeds almost isometrically into X).

Theorem (Pisier, 2016)

 D_n bilipschitz embeds into X with uniform distortion $2 + \varepsilon$.

Theorem (Lee and Rhagavendra, 2010)

 D_n bilipschitz embeds into $L_1[0,1]$ with uniform distortion 4/3.

Low distortion embeddings of Laakso graphs \mathcal{L}_n

Here *X* is not super-reflexive and $\varepsilon > 0$.

Theorem (DKS, 2022)

 \mathcal{L}_n bilipschitz embed into X with distortion $2 + \varepsilon$.

Theorem (DKS, 2022)

 \mathcal{L}_n bilipschitz embed into $L_1[0,1]$ with distortion 4/3.

Lower bounds on distortion

Theorem (DKS)

The diamond graph D_2 does not embed into $L_1[0,1]$ with distortion less than 5/4.

Remark

 \exists simple embedding of D_2 into $L_1[0,1]$ with distortion 4/3 which may be optimal, but we don't have a proof.

Theorem (DKS, 2022)

The Laakso graph \mathcal{L}_2 does not embed into $L_1[0,1]$ with distortion less than 9/8.

Sketch of the proofs of the results

Theorem

Suppose X is not super-reflexive. $\forall \ \varepsilon > 0 \ \text{and} \ \forall \ n \geqslant 1$, $\exists f_n \colon \mathcal{L}_n \to X \ \text{s.t.} \ \forall \ a,b \in \mathcal{L}_n$,

$$\frac{1}{2}d(a,b)-\varepsilon\leqslant \|f_n(a)-f_n(b)\|\leqslant d(a,b). \tag{2}$$

▶ Since *X* is not *J*-convex, $\exists (e_i^n)_{i=1}^{4^n}$ s.t. $||e_i|| \leqslant 1$ and

$$\min_{1\leqslant j\leqslant 4^n}\|\boldsymbol{e}_1+\cdots+\boldsymbol{e}_j-\boldsymbol{e}_{j+1}-\cdots-\boldsymbol{e}_{4^n}\|\geqslant 4^n-\varepsilon.$$

 $ightharpoonup f_n$ is of form

$$f_n(a) = \sum_{i=1}^{4^n} (e_i^n)^* (f_n(a)) e_i^n, \tag{3}$$

where $(e_i^n)^*(f_n(a)) \in \{0, 1\}$

► The proof is inductive:

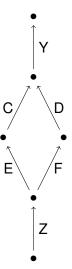


Figure: The Laakso graph \mathcal{L}_n

Inductive definition

Let $\rho: \mathcal{L}_{n-1} \to X$ be a 'copy' of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=1}^{4^{n-1}}$. Formally,

$$\rho(a) = \sum_{i=1}^{4^{n-1}} (e_i^{n-1})^* (f_{n-1}(a)) e_i^n.$$

- ▶ Let $\theta: \mathcal{L}_{n-1} \to X$ be a copy of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=4^{n-1}+1}^{2\cdot 4^{n-1}}$.
- ▶ Let $\phi: \mathcal{L}_{n-1} \to X$ be a copy of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=2\cdot 4^{n-1}+1}^{3\cdot 4^{n-1}}$.
- Let $\sigma: \mathcal{L}_{n-1} \to X$ be a copy of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=3\cdot 4^{n-1}+1}^{4^n}$.

Now we define $f_n \colon \mathcal{L}_n \to X$ as follows:

$$f_n(a) = \begin{cases} \rho(\overline{a}), & a \in Y \\ \sum_{i=1}^{4^{n-1}} e_i^n + \theta(\overline{a}), & a \in C \\ \sum_{i=1}^{4^{n-1}} e_i^n + \phi(\overline{a}), & a \in D \\ \sum_{i=1}^{2 \cdot 4^{n-1}} e_i^n + \phi(\overline{a}), & a \in E \\ \sum_{i=1}^{4^{n-1}} e_i^n + \sum_{i=2 \cdot 4^{n-1}+1}^{3 \cdot 4^{n-1}} e_i^n + \theta(\overline{a}), & a \in F \\ \sum_{i=1}^{3 \cdot 4^{n-1}} e_i^n + \sigma(\overline{a}), & a \in Z. \end{cases}$$

► Check $||(f_n(a) - f_n(b))||$ case by case, e.g. $a \in D, b \in E$ (Case 4 in the paper).

Lower estimate for $||f_n(a) - f_n(b)||$

Let $(e_i)_{i=1}^m$ satisfy $||e_i|| \le 1$ and

$$\min_{1\leqslant j\leqslant m}\|e_1+\cdots+e_j-e_{j+1}-\cdots-e_m\|\geqslant m-\varepsilon.$$

Lemma

 $\max A < \min B \Rightarrow$

$$\|\sum_{i\in A}e_i-\sum_{i\in B}e_i\|\geqslant |A|+|B|-\varepsilon.$$

Lemma

 $\max A < \min B \text{ or } \max B < \min A \Rightarrow$

$$\|\sum_{i\in A} \varepsilon_i e_i + \sum_{i\in B} e_i\| \geqslant |B| - \varepsilon.$$

for all choices of signs $\varepsilon_i = \pm 1$.

Bilipschitz embedding into $L_1[0, 1]$.

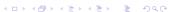
Theorem

$$\forall n \geqslant 1, \exists f_n \colon \mathcal{L}_n \to L_1[0,1] \text{ s.t. } \forall a,b \in \mathcal{L}_n,$$

$$\frac{3}{4}d(a,b) \leqslant \|f_n(a) - f_n(b)\|_1 \leqslant d(a,b).$$

Proof.

Similar but uses independent sets to improve 1/2 to 3/4.



Lower bounds on distortion

Theorem

Let $f \colon \mathcal{L}_2 \to L_1[0,1]$ satisfy

$$d(a,b)\leqslant \|f(a)-f(b)\|_1\leqslant cd(a,b).$$

Then $c \geqslant 9/8$.

Theorem

Let $f: D_2 \rightarrow L_1[0,1]$ satisfy

$$d(a,b)\leqslant \|f(a)-f(b)\|_1\leqslant cd(a,b).$$

Then $c \geqslant 5/4$.

Hypermetric and negative type inequalities

Theorem B (Deza-Laurent, 1997)

Let (M, ρ) be a finite metric space that embeds isometrically into $L_1[0, 1]$.

 $\forall k_i \in \mathbb{Z} \ (1 \leqslant i \leqslant n) \ s.t. \ \sum_{i=1}^n k_i = 0 \ (negative \ type \ inequalities)$ or $\sum_{i=1}^n k_i = 1 \ (hypermetric \ inequalities),$

$$\sum_{1 \leqslant i < j \leqslant n} k_i k_j \rho(x_i, x_j) \leqslant 0,$$

where x_1, \ldots, x_n are the distinct elements of M.

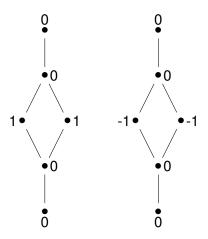


Figure: Weights P (left) and N (right) for \mathcal{L}_1

 $P \to \{C, F\}, N \to \{D, E\}, \text{ zero } \to \{Y, Z\} \text{ copies of } \mathcal{L}_1 \text{ in } \mathcal{L}_2.$

▶ $\sum_{i=1}^{30} k_i = 0$ ⇒ negative type inequality

$$72 = \sum_{i < j, k_i k_j > 0} k_i k_j d(x_i, x_j)$$

$$\leq \sum_{i < j, k_i k_j > 0} k_i k_j || f(x_i) - f(x_j) ||_1$$

$$\leq \sum_{i < j, k_i k_j < 0} |k_i k_j| || f(x_i) - f(x_j) ||_1$$

$$\leq c \sum_{i < j, k_i k_j < 0} |k_i k_j| d(x_i, x_j)$$

$$= 64c.$$

► So $c \ge 9/8$.