Metric embeddings of Laakso graphs into
Banach spaces
( S. J. Dilworth, Denka Kutzarova, and
Svetozar Stankov)



Super-reflexive Banach spaces

Definition
Let Xy, Yp be n-dimensional normed spaces. The
Banach-Mazur distance from Xj to Yy is defined by

dm(Xo, Yo) = inf{||T||- IT7'|: T: Xo = Yo}
Definition
Let X and Y be infinite-dimensional Banach spaces. Y is

finitely representable in X if Ve > 0 and V finite-dimensional
subspaces Yy of Y 3 a finite-dimensional subspace Xj of X with

dem(Xo, Yo) <1 +e.



Definition (James, 1972)
X is super-reflexive if

Y is finitely representable in X = Y is reflexive (i.e., Y = Y™).

Remark
> super-reflexive = reflexive
» (,and L,[0, 1] are super-reflexive < 1 < p < oo
> (D=1 £9)2 is reflexive but not super-reflexive



Characterizations of super-reflexive spaces

Theorem (Enflo, 1972)

X is super-reflexive if and only if X is isomorphic to a uniformly
convex Banach space.

Theorem (James-Schaffer, 1972, Schaffer-Sundaresan,
1970)

X is super-reflexive if and only if X is J-convex:
dm > 2,e > 0 such thatVey,...,en, |6l <1,

1 e — e; —..—g m— . 1
12}2‘,””31 T+ 6 — €y ml| < € (1)



Bilipschitz embeddings of metric spaces

Definition
A metric space M bilipschitz embeds in a Banach space X with
distortion Dif 3 f: M — X s.t.

SO ) <0~ F) < plx.y)  (xy € M),



Characterization of super-reflexivity: Binary trees

Definition '
For n > 1, the binary tree By, := {0} U?_, {0, 1}’ equipped with
the shortest path metric.

Theorem (Bourgain, 1986)
X is not superreflexive < 3D > 1 and maps f,: B, — X s.t.

d(s,t)
D

i.e., By bilipschitz embeds into X with uniform distortion.

< [Ifn(s) = (D) < d(s, 1),




Diamond graphs

» The diamond graphs D, are defined recursively:
» Dy is a single edge.

» D, is obtained from D,_4 by replacing each edge by a
‘diamond’.
» Equip D, with the shortest path metric.



Figure: Diamond D..



Laakso graphs

» The Laakso graphs L, are defined recursively:
> Lo is a single edge.

» L, is obtained from L,_1 by replacing each edge by a copy
of L1

» Equip £, with the shortest path metric.

Theorem (Ostrovska-Ostrovskii, 2017)

Laakso graphs do not uniformly bilipschitz embed into diamond
graphs.
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Figure: The Laakso graphs £1 and Lo
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Figure: The Laakso graph £,

Here C,D,E,F,Y,Z are copies of L,_1.



Characterization of super-reflexivity: diamond and
Laakso graphs

Theorem (Johnson-Schechtman, 2009)
Let X be a Banach space. Then X is not superreflexive

< 3D > 1 and maps f,: Dp — X or f,: L, — X such that

d(s,t)
D

< |Ifa(s) = fa(B)]| < d(s; 1),

i.e., Dn and L, bilipschitz embed into X with uniform distortion.



Further graph characterizations

Suppose X is not super-reflexive. Lete > 0

Theorem (Ostrovskii-Randrianantoanina, 2017)

The k-branching diamond D, x and Laakso L, x graphs
bilipschitz embed into X with uniform distortion 8 + ¢.

Theorem (Swift, 2018)

Bundle graphs generated by a finitely-branching bundle graph
bilipschitz embed with distortion indepenedent of the branching
number. Parasol graphs embed with distortion 8 + ¢.



Low distortion embeddings of diamond graphs D,

Suppose X is not super-reflexive. Lete > 0

Theorem (folklore)

The binary trees By, bilipschitz embed into X with uniform
distortion 1 + ¢ (B, embeds almost isometrically into X).
Theorem (Pisier, 2016)

Dy, bilipschitz embeds into X with uniform distortion 2 + €.

Theorem (Lee and Rhagavendra, 2010)
D, bilipschitz embeds into L0, 1] with uniform distortion 4 /3.



Low distortion embeddings of Laakso graphs L,

Here X is not super-reflexive and ¢ > 0.

Theorem (DKS, 2022)
Ln bilipschitz embed into X with distortion 2 + ¢.

Theorem (DKS, 2022)
L, bilipschitz embed into L1[0, 1] with distortion 4/3.



Lower bounds on distortion

Theorem (DKS)

The diamond graph D, does not embed into L+[0, 1] with
distortion less than 5/4.

Remark
3 simple embedding of D into L4[0, 1] with distortion 4/3 which
may be optimal, but we don’t have a proof.

Theorem (DKS, 2022)

The Laakso graph L does not embed into L4[0, 1] with
distortion less than 9/8.



Sketch of the proofs of the results

Theorem
Suppose X is not super-reflexive. Ve > 0andv n> 1, 3
fi: Lp—XstVabeLy,

1

5d(a b) —e <|lfn(a) — fn(b)|| < d(a,b).

> Since X is not J-convex, 3 (eM)#¥, s.t. ||ej]| < 1 and

1<j<4n
» f,is of form
4n

fn(a) = () (fa(a))e,

p
where (el)*(f,(a)) € {0,1}

min |le+--+6—6y1— - — el >4"—¢.



» The proof is inductive:
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Figure: The Laakso graph £,



Inductive definition

> Let p: L1 — X be a ‘copy’ of frq with (&~ ha
replaced by (e")*",". Formally,
4n—1

p(@) =" (el ) (fr1(a))ef.

i=1

> Letd: £L,_1 — X be acopy of f,_1 with (ej."‘*1);"§1 replaced
by (672,

i=4n—141"
> Let ¢: /:nn 11—> X be a copy of f,_1 with (e” 1)7‘ ; replaced
by ( )? 42 4n—1419"

> Leto: L‘,, 1 — X be a copy of f,_1 with (e” 1)4; replaced
by (e; ): 3.40-141"



» Now we define f,: £, — X as follows:

p(a),
n—1 .
2?211 e/(7 + 9(3),
4n- -
_ Zi:1 e? + ¢(a)a
fn(a) - 2.4n=1 4 _
=1 &; +¢(3),1
4n- 3.4~
i1 € T 2 ii0.an—111

qan—1 _
e +o(a),

ef +0(a),

aeyY
aeC
aeD
ackE
aeF
ac’.

» Check ||(fa(a@) — fa(b)|| case by case, e.g. ac D,bec E

(Case 4 in the paper).



Lower estimate for ||f,(a) — f,(b)||
Let (e;)]”, satisfy ||g;|| < 1 and

i @i — e — >m-—e.
121jg1mHe1+ + 8 — €41 em||=m—e¢

Lemma
maxA < min B =

1> 6= el > Al +1B| <.

i€cA ieB

Lemma
maxA < minBormaxB < minA =

1Y ciei+> el > 1B —e.

i€A ieB

for all choices of signs e; = +1.



Bilipschitz embedding into L]0, 1].

Theorem
Vn} 1,;' fn: [:n—> L1[0,1] S-t Va,bEﬁn,

3
29(a b) < lifa(a) — f(b)[l+ < d(a, b).

Proof.

Similar but uses independent sets to improve 1/2 to 3/4. O



Lower bounds on distortion

Theorem
Letf: Lo — L4[0, 1] satisfy

d(a,b) < [|[f(a) — f(b)|[1 < cd(a,b).
Thenc > 9/8.

Theorem
Letf: D, — L4]0, 1] satisfy

d(a,b) < ||f(a) — f(b)|l1 < cd(a, b).
Thenc > 5/4.



Hypermetric and negative type inequalities

Theorem B (Deza-Laurent, 1997)

Let (M, p) be a finite metric space that embeds isometrically
into L4[0, 1].

VkieZ (1<i<n)st k=0 (negative type inequalities)
or >, ki = 1 (hypermetric inequalities),

Z kikip(xi, X;) < 0,

1<i<j<n

where x4, ..., xp are the distinct elements of M.
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Figure: Weights P (left) and N (right) for L4

P—{C,F},N— {D,E}, zero — {Y,Z} copies of L1 in L.



> 320 ki = 0 = negative type inequailty
>

72 = Z kikid(xi, x;)
i<jKiki>0

< Y kiKIIFOG) = F)l+

i<j,kiki>0

< >0 IkiklIFC) — )l
i<j,kiki<0

<c Y. |kkld(x, x)
i<j,kiki<0

= 64c.

» Soc>9/8.



