Resonance Cases for Nonlocal Wave Equation

Yulian Tsankov

Faculty of Mathematics and Informatics Sofia University St. Kliment Ohridski

In memory of prof. Ivan Dimovski

5 декември 2023 г.

Boundary Value Problem

$$
\begin{align*}
& u_{t t}=u_{x x}, \quad 0<x<1, \quad 0<t \tag{1}\\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0, \quad 0 \leq x \leq 1 \tag{2}\\
& u(0, t)=0, \quad u(1, t)=0 \quad 0 \leq t \tag{3}
\end{align*}
$$

Its solution in the series form is given by

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin n \pi x \cos n \pi t
$$

where A_{n} are the Fourier coefficients of the expansion of $f(x)$ in terms of the sine functions $\sin n \pi x, n=1,2$. The solution is a periodic function of time with period 1 and, hence, is bounded.

Nonlocal Boundary Value Problems

$$
\begin{align*}
& u_{t t}=u_{x x}, \quad 0<x<1, \quad 0<t \tag{4}\\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \\
& u(0, t)=0, \quad \int_{0}^{1} u(x, t) d x=0
\end{align*}
$$

Beilin, S.A. Existence of solutions for one-dimensional wave equations with nonlocal conditions. Electron. J. Diff.Eqns., vol. 2001 no. 76 (2001), 1 - 8.

$$
\begin{aligned}
& u_{t t}=u_{x x}, \quad 0<x<1, \quad 0<t \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \\
& u(0, t)=0, \quad u(1, t)=u(c, t)
\end{aligned}
$$

Our aim is to find explicit solutions.

Nonlocal conditions

$$
\Phi_{\xi}\{y(\xi)\}=\int_{0}^{1} y(\xi) d \xi=0
$$

Ionkin, N.I., Solution of One Boundary-Value Problem of Heat Conduction Theory with a Nonclassical Boundary Condition, Differ. Uravn., 1977, vol. 13, no. 2, pp. 294-304.

$$
\Phi_{\xi}\{y(\xi)\}=y(1)-y(c), \quad c \in(0,1)
$$

A.V. Bitsadze, A.A. Samarskii, On some simplest generalizations of linear elliptic boundary value problems, Doklady AN SSSR, 185, No 4 (1969), 739-741 (In Russian).

One-dimensional spectral problems

With BVP (4) it is connected the following non-local eigenvalue problem in $C^{2}([0,1])$:

$$
\begin{equation*}
y^{\prime \prime}+\lambda^{2} y=f(x), \quad y(0)=0, \quad \Phi\{y\}=\int_{0}^{1} y(\xi) d \xi=0, \quad x \in[0,1] . \tag{5}
\end{equation*}
$$

The sine indicatrix of the functional Φ is

$$
E(\lambda)=\Phi\left\{\frac{\sin \lambda \xi}{\lambda}\right\}=\int_{0}^{1} \frac{\sin \lambda \xi}{\lambda} d \xi=\frac{1-\cos \lambda}{\lambda^{2}} .
$$

The eigenvalues $\lambda: E(\lambda)=0$ are

$$
\lambda_{n}=2 n \pi, \quad n=1,2,3, \ldots
$$

and each of them has multiplicity 2 .

The spectral projectors

The functions

$$
\sin \lambda_{n} \xi, \quad x \cos \lambda_{n} \xi
$$

are eigenfunctions and associated eigenfunctions, respectively.

The spectral projections has the representation:
$P_{\lambda_{n}}\{f\}=4\left(\int_{0}^{a} f(\xi)(a-\xi) \sin \lambda_{n} \xi d \xi\right) \sin \lambda_{n} x-4\left(\int_{0}^{a} f(\xi)\left(1-\cos \lambda_{n} \xi\right) d \xi\right) \times \cos \lambda_{n} x$

The spectral projectors

Solution of the nonlocal boundaryvalue problem (4) in a series form was found by Beilin, S.A. Existence of solutions for one-dimensional wave equations with nonlocal conditions. Electron. J. Diff.Eqns., vol. 2001 no. 76 (2001), 1 - 8.

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n}(t) \sin \lambda_{n} x+B_{n}(t) x \cos \lambda_{n} x\right)
$$

$$
\begin{align*}
& u_{t t}=u_{x x}, \quad 0<x<1, \quad 0<t \tag{6}\\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \\
& u(0, t)=0, \quad u(1, t)=u(c, t)
\end{align*}
$$

One-dimensional spectral problems

With BVP (6) it is connected the following non-local eigenvalue problem in $C^{2}([0,1])$:

$$
\begin{equation*}
y^{\prime \prime}+\lambda^{2} y=f(x), \quad y(0)=0, \quad \Phi\{y\}=y(1)-y(c)=0, \quad x \in[0,1] \tag{7}
\end{equation*}
$$

The sine indicatrix of the functional Φ is

$$
E(\lambda)=\Phi\left\{\frac{\sin \lambda \xi}{\lambda}\right\}=\frac{\sin \lambda-\sin c \lambda}{\lambda}
$$

The eigenvalues $\lambda: E(\lambda)=0$ are

$$
\lambda_{n}=\frac{(2 n-1) \pi}{1+c}, \quad \mu_{k}=\frac{2 k \pi}{1-c}, \quad n, k \in \mathbb{N}
$$

1) The arithmetic progressions $\left(\lambda_{n}\right)$ and $\left(\mu_{k}\right)$ have no common terms. This happens when c is an irrational number.
2) For some rational c it may happen some λ_{n} to be equal to some μ_{k}. For example, $c=\frac{1}{5}, c=\frac{3}{7}$.

The spectral projectors

1. Let all the eigenvalues be simple. Then the spectral Riesz' projectors for $\left(\lambda_{n}\right)$ are

$$
\begin{gathered}
P_{\lambda_{n}}\{f\}= \\
=\frac{4}{\cos \lambda_{n}-c \cos c \lambda_{n}}\left(\int_{0}^{1} \sin \left(\lambda_{n}(1-\xi)\right) f(\xi) d \xi-\int_{0}^{c} \sin \left(\lambda_{n}(c-\xi)\right) f(\xi) d \xi\right) \sin \left(\lambda_{n} x\right)
\end{gathered}
$$

and the spectral projectors for $\left(\mu_{k}\right)$ are

$$
\begin{gathered}
P_{\mu_{k}}\{f\}= \\
=\frac{4}{\cos \mu_{k}-c \cos c \mu_{k}}\left(\int_{0}^{1} \sin \left(\mu_{k}(1-\xi)\right) f(\xi) d \xi-\int_{0}^{c} \sin \left(\mu_{k}(c-\xi)\right) f(\xi) d \xi\right) \sin \left(\mu_{k} x\right)
\end{gathered}
$$

The spectral projectors

2. If $\lambda_{n}=\mu_{k}$, then $E\left(\lambda_{n}\right)=0, E^{\prime}\left(\lambda_{n}\right)=0$ but $E^{\prime \prime}\left(\lambda_{n}\right) \neq 0$. In this case the spectral projectors are

$$
\begin{aligned}
& P_{\lambda_{n}}\{f\}=C_{n}\left(\int_{0}^{1} f(\xi) \sin \lambda_{n}(1-\xi) d \xi-\int_{0}^{c} f(\xi) \sin \lambda_{n}(c-\xi) d \xi\right) \times \cos \lambda_{n} x \\
& \quad+\left[C_{n}\left(\int_{0}^{1}(1-\xi) f(\xi) \cos \lambda_{n}(1-\xi) d \xi-\int_{0}^{c}(c-\xi) f(\xi) \cos \lambda_{n}(c-\xi) d \xi\right)\right. \\
& \left.+\frac{G_{n}-C_{n}}{\lambda_{n}}\left(\int_{0}^{1} f(\xi) \sin \lambda_{n}(1-\xi) d \xi-\int_{0}^{c} f(\xi) \sin \lambda_{n}(c-\xi) d \xi\right)\right] \sin \lambda_{n} x
\end{aligned}
$$

where

$$
C_{n}=\frac{4}{\left(1-c^{2}\right) \sin \lambda_{n}}, \quad G_{n}=\frac{4\left(\lambda_{n} \cos \lambda_{n}-c^{3} \lambda_{n} \cos \lambda_{n} c-3\left(1-c^{2}\right) \sin \lambda_{n}\right)}{3\left(1-c^{2}\right)^{2} \sin ^{2} \lambda_{n}}
$$

The formal spectral expansion of function

Definition 1. Let $f \in C[0,1]$. The formal spectral expansion of $f(x)$ for the eigenvalue problem

$$
\begin{align*}
& \frac{d^{2}}{d x^{2}} y(x)+\lambda^{2} y(x)=0, \quad 0<x<1 \tag{8}\\
& y(0)=0, \quad \Phi_{\xi}\{y(\xi)\}=0
\end{align*}
$$

is the correspondence

$$
\begin{equation*}
f(x) \sim \sum_{k=1}^{\infty} P_{\lambda_{k}} \tag{9}
\end{equation*}
$$

In fact, this formal spectral expansion, is not completely formal, since it has a uniqueness property: if $P_{\lambda_{k}}\{f\}=0$ for $k=1,2, \ldots$, then $f(x) \equiv 0$.

This follows immediately from a theorem of N . Bozhinov.
Bozhinov N. S. On theorems of uniqueness and completeness of expansion on eigen and associated eigenfunctions of the nonlocal Sturm-Liouville operator on a finite interval. Diferenzialnye Uravnenya, 26, 5, 1990, pp. 741-453 (Russian)

A convolution

The operation

$$
\begin{equation*}
(f \stackrel{\times}{*} g)(x)=-\frac{1}{2} \widetilde{\Phi}_{\xi}\{h(x, \xi)\} \tag{10}
\end{equation*}
$$

where

$$
h(x, \zeta)=\int_{x}^{\zeta} f(\zeta+x-\eta) g(\eta) d \eta-\int_{-x}^{\zeta} f(|\zeta-x-\eta|) g(|\eta|) \operatorname{sgn}(\eta(\zeta-x-\eta)) d \eta
$$

and $\widetilde{\Phi}_{\xi}=\Phi_{\xi} \circ I_{\xi}, l_{\xi} f(\xi)=\int_{0}^{\xi} f(\zeta) d \zeta$
is a bilinear, commutative and associative operations in $C([0 ; 1])$.
I.H. Dimovski, Convolutional Calculus, Kluwer, Dordrecht 1990.

Explicit solution

We can represent the solutions of the problem (6)

$$
\begin{aligned}
& u_{t t}=u_{x x}, \quad 0<x<1, \quad 0<t \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \\
& u(0, t)=0, \quad u(1, t)=u(c, t) \\
& \quad u=\frac{\partial^{4}}{\partial x^{4}}(\Omega * f)
\end{aligned}
$$

Where $\Omega(x, t)$ is the solution of (6) for

$$
f(x)=\frac{x^{3}}{6}-\frac{1+c+c^{2}}{6} x
$$

$f(x)$ is the unique polynomial of degree 3 such that $f^{\prime \prime}(x)=x$ and $f(0)=f(1)-f(c)=0$.

Explicit solution

We can represent the solutions of the problem (4)

$$
\begin{aligned}
& u_{t t}=u_{x x}, \quad 0<x<1, \quad 0<t \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \\
& u(0, t)=0, \quad \int_{0}^{1} u(x, t) d x=0 \\
& u=\frac{\partial^{4}}{\partial x^{4}}(U * f)
\end{aligned}
$$

Where $U(x, t)$ is the solution of (4) for

$$
f(x)=\frac{x^{3}}{6}-\frac{x}{12}
$$

$f(x)$ is the unique polynomial of degree 3 such that $f^{\prime \prime}(x)=x$ and

$$
f(0)=\int_{0}^{1} f(x) d x=0
$$

Resonance Cases for Nonlocal Wave Equation

It is observed that in this case the solution has the form

$$
u(x, t)=v(x, t)+t \quad w(x, t)
$$

where v and w are continuous functions in $0<x<1, \quad 0<t$, periodic with respect to t, and as such they are uniformly bounded. This means that the oscillation amplitude of the system described by this equation increases infinitely with time at any fixed $x \in[0,1]$ in absence of external forces $(F=0)$.

THANK YOU FOR YOUR ATTENTION

