Bernstein functions and Jeffreys-type equations

Emilia Bazhlekova

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

Annual scientific session of section "Analysis, Geometry and Topology" IMI-BAS, December 4, 2023

In memory of Professor Ivan Dimovski

Complete Bernstein functions

 $\varphi:\mathbb{R}_+\to\mathbb{R}_+\text{, }\varphi\in C^\infty$

 $\varphi \in \mathcal{CMF}$ (completely monotone functions):

$$(-1)^n \varphi^{(n)}(t) \ge 0, \quad t > 0, n = 0, 1, 2, \dots$$
 (1)

 $\varphi \in \mathcal{BF}$ (Bernstein functions) $\Leftrightarrow \varphi \ge 0, \ \varphi' \in \mathcal{CMF}$

 $\varphi \in CBF$ (complete Bernstein functions):

$$\varphi(s) = a + bs + \int_0^\infty (1 - e^{-s\tau}) m(\tau) \, d\tau, \tag{2}$$

where $a, b \geq 0$, $m \in CMF$; $CBF \subset BF$.

Basic examples: CBF: s^{α} , $s^{\alpha}/(s+a)^{\alpha}$, $\alpha \in [0,1]$, a > 0; $\log(1+s)$; CMF: $\exp(-t)$; $t^{\beta-1}E_{\alpha,\beta}(-\lambda t^{\alpha}) \in CMF$ for $\lambda > 0$, $0 < \alpha \leq \beta \leq 1$;

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} - \text{Mittag-Leffler function}$$
(3)

[1] R.L. Schilling, R. Song, Z. Vondraček (2010), Bernstein functions: Theory and applications.

Complete Bernstein functions

All classes are convex cones (closed under linear combinations with positive coefficients); CMF is closed under multiplication.

Define the set:

$$\mathcal{CBF}^{\delta} := \left\{ \varphi^{\delta} : \varphi \in \mathcal{CBF} \right\}, \quad \delta > 0.$$
(4)

Property: $CBF^{\delta_1} \subseteq CBF^{\delta}$, $0 < \delta_1 \leq \delta$.

Proposition 1: Let $f_1 \in CBF^{\delta_1}, f_2 \in CBF^{\delta_2}$, where $\delta_1, \delta_2 > 0$. Then

$$f_1 \cdot f_2 \in \mathcal{CBF}^{\delta_1 + \delta_2}.$$
(5)

Proposition 2: Let $\delta \in (0, 1]$. Then the set CBF^{δ} is a convex cone.

Proposition 3: Let $0 \le \delta_n \le \delta \le 1$, $q_n \ge 0$, $n = 1, \ldots, N$. Then

$$s^{\delta} + \sum_{n=1}^{N} q_n s^{\delta_n} \in \mathcal{CBF}^{\delta}$$
 and $\left(s^{-\delta} + \sum_{n=1}^{N} q_n s^{-\delta_n}\right)^{-1} \in \mathcal{CBF}^{\delta}.$

Fractional Jeffreys-type diffusion-wave equation

$$(1+aD_t^{\alpha})\frac{\partial}{\partial t}u(\mathbf{x},t) = D_t^{1-\gamma} \left(1+bD_t^{\beta}\right) \Delta u(\mathbf{x},t),$$
(6)

where $0 < \alpha, \beta, \gamma \leq 1$, a > 0, b > 0, Δ - Laplace operator, and D_t^{δ} - the Riemann-Liouville fractional derivative of order $\delta > 0$

$$D_t^{\delta} f(t) = \frac{d^m}{dt^m} \int_0^t \frac{(t-\tau)^{m-\delta-1}}{\Gamma(m-\delta)} f(\tau) \, d\tau, \quad m-1 < \delta < m, \ m = 1, 2, \dots$$

[2] Awad, E., Sandev, T., Metzler, R., Chechkin, A.: From continuous-time random walks to the fractional Jeffreys equation: Solution and properties. *Int. J. Heat Mass Transf.* (2021)

Multi-term fractional Jeffreys-type diffusion-wave equation

Multi-term generalization:

$$\left(1 + aD_t^{\alpha} + \sum_{k=1}^{K} a_k D_t^{\alpha_k}\right) \frac{\partial u}{\partial t} = D_t^{1-\gamma} \left(1 + bD_t^{\beta} + \sum_{j=1}^{J} b_j D_t^{\beta_j}\right) \Delta u, \quad (7)$$

with the following assumptions on the parameters

$$0 < \alpha_k < \alpha \le 1, \quad 0 < \beta_j < \beta \le 1, \quad 0 < \gamma \le 1, a > 0, \quad b > 0, \quad a_k \ge 0, \quad b_j \ge 0, k = 1, \dots, K, \quad j = 1, \dots, J, \quad K, J \in \mathbb{N}.$$
(8)

Characteristic function

$$g(s) = s^{\gamma} \left(1 + as^{\alpha} + \sum_{k=1}^{K} a_k s^{\alpha_k} \right) \left(1 + bs^{\beta} + \sum_{j=1}^{J} b_j s^{\beta_j} \right)^{-1}, \quad s > 0.$$
(9)

Aim: Find restrictions on the parameters, which guarantee $g(s) \in \mathcal{CBF}^2$

Restrictions on the parameters

Theorem 1: Assume $\beta \leq \gamma$. Then $g(s) \in CBF^{\alpha+\gamma}$.

Theorem 2: Assume $\alpha = \beta$, K = J, $\alpha_k = \beta_k$, $a_k, b_k > 0$, $k = 1, \ldots, K$, and $0 < \alpha_1 < \cdots < \alpha_K < \alpha < 1$. Then the characteristic function g(s) obeys the inclusions:

(a) If
$$\gamma = 1$$
 and $1 \ge a_1/b_1 \ge \cdots \ge a_K/b_K \ge a/b$ then $g(s) \in CBF$;

(b) If
$$1 \ge b_1/a_1 \ge \cdots \ge b_K/a_K \ge b/a$$
 then $g(s) \in CBF^{1+\gamma}$.

Theorem 3: In the single-term case with $\alpha = \beta$ the characteristic function obeys the inclusions:

(a) If 0 < a < b and $\alpha \leq \gamma$ then $g(s) \in CBF^{\gamma}$;

(b) If a > b > 0 then $g(s) \in CBF^{\alpha+\gamma}$.

Single-term case

Corollary: Let $0 < \alpha, \beta, \gamma \leq 1$ and a > 0, b > 0. The characteristic function of the single-term equation satisfies $g(s) \in CBF$ if any of the following sets of conditions is satisfied:

(a)
$$\beta \leq \gamma$$
 and $\alpha + \gamma \leq 1$;

(b)
$$a < b$$
 and $\alpha = \beta \leq \gamma$;

(c)
$$a > b$$
, $\alpha = \beta$, and $\alpha + \gamma \leq 1$.

This corollary expands the conditions in [2].

Subordination results

X - Banach space with norm $\|.\|$; A - closed linear operator in X with dense domain $D(A) \subset X$, equipped with the graph norm.

Fractional Jeffreys-type equation in abstract form:

$$\left(1 + aD_t^{\alpha} + \sum_{k=1}^{K} a_k D_t^{\alpha_k}\right) u'(t) = D_t^{1-\gamma} \left(1 + bD_t^{\beta} + \sum_{j=1}^{J} b_j D_t^{\beta_j}\right) Au(t).$$
(10)

Initial conditions: $u(0) = v \in X$, u'(0) = 0.

Fractional evolution equation:

$$D_t^{\delta}(u(t) - u(0)) = Au(t), \quad t > 0.$$
(11)

Initial conditions:

$$u(0) = v \in X \text{ for } \delta \in (0, 1];$$

$$u(0) = v \in X, \ u'(0) = 0 \text{ for } \delta \in (1, 2].$$
(12)

 $S_{\delta}(t)$ - solution operator to problem (11)-(12).

Subordination

Theorem: Assume the Cauchy problem (11) is well posed for some δ , $0 < \delta \leq 2$, and admits a bounded solution operator $S_{\delta}(t)$. Let

$$g(s) \in \mathcal{CBF}^{\delta}, \quad s > 0.$$
 (13)

Then the fractional Jeffreys-type equation (10) admits a bounded solution operator S(t), such that

$$S(t) = \int_0^\infty \Phi(t,\tau) S_\delta(\tau) \, d\tau, \quad t > 0, \tag{14}$$

where $\Phi(t,\tau)$ is defined via the Laplace transform

$$\widehat{\Phi}(s,\tau) = \int_0^\infty e^{-st} \Phi(t,\tau) \, dt = \frac{g(s)^{1/\delta}}{s} \exp\left(-\tau g(s)^{1/\delta}\right)$$

and

$$\Phi(t,\tau) \ge 0, \quad \int_0^\infty \Phi(t,\tau) \, d\tau = 1, \qquad t,\tau > 0.$$

Injectivity

Theorem: Assume f(t), $t \ge 0$, is a function with values in the Banach space X, such that $||f(t)|| \le C$, $t \ge 0$. Then the integral

$$\widetilde{f}(t) = \int_0^\infty \Phi(t,\tau) f(\tau) \, d\tau, \quad t > 0,$$

is well defined. Let $\widetilde{f}(t) = 0$ for a.e. $t \in (0, T)$, where T > 0. Then $f \equiv 0$.

This injectivity property is useful for the proof of uniqueness in some inverse problems.

Reference:

E. Bazhlekova, Subordination approach to multi-term time-fractional Jeffreys equation (in preparation).