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Abstract: Dedicated to the memory of Professor Richard Askey (1933–2019) and to pay tribute to the
Bateman Project. Harry Bateman planned his “shoe-boxes” project (accomplished after his death as
Higher Transcendental Functions, Vols. 1–3, 1953–1955, under the editorship by A. Erdélyi) as a “Guide
to the Functions”. This inspired the author to use the modified title of the present survey. Most of
the standard (classical) Special Functions are representable in terms of the Meijer G-function and,
specially, of the generalized hypergeometric functions pFq. These appeared as solutions of differential
equations in mathematical physics and other applied sciences that are of integer order, usually of
second order. However, recently, mathematical models of fractional order are preferred because they
reflect more adequately the nature and various social events, and these needs attracted attention to

“new” classes of special functions as their solutions, the so-called Special Functions of Fractional Calculus
(SF of FC). Generally, under this notion, we have in mind the Fox H-functions, their most widely
used cases of the Wright generalized hypergeometric functions pΨq and, in particular, the Mittag–
Leffler type functions, among them the “Queen function of fractional calculus”, the Mittag–Leffler
function. These fractional indices/parameters extensions of the classical special functions became
an unavoidable tool when fractalized models of phenomena and events are treated. Here, we try
to review some of the basic results on the theory of the SF of FC, obtained in the author’s works
for more than 30 years, and support the wide spreading and important role of these functions by
several examples.

Keywords: special functions; generalized hypergeometric functions; fractional calculus operators;
integral transforms

MSC: 33C60; 33E12; 26A33; 44A20

1. Historical Introduction

Special functions are particular mathematical functions that have more or less estab-
lished names and notations due to their importance in mathematical analysis, functional
analysis, geometry, physics, astronomy, statistics or other applications (Wikipedia: Special
Functions [1]). It might be Euler, who started to talk, since 1720, about lots of the stan-
dard special functions. He defined the Gamma-function as a continuation of the factorial,
also the Bessel functions and looked after the elliptic functions. Several (theoretical and
applied) scientists started to use such functions, introduced their notations and named
them after famous contributors. Thus, the notions as the Bessel and cylindrical functions;
the Gauss, Kummer, Tricomi, confluent and generalized hypergeometric functions; the
classical orthogonal polynomials (as Laguerre, Jacobi, Gegenbauer, Legendre, Tchebisheff,
Hermite, etc.); the incomplete Gamma- and Beta-functions; and the Error functions, the
Airy, Whittaker, etc. functions appeared and a long list of handbooks on the so-called
“Special Functions of Mathematical Physics” or “Named Functions” (we call them also “Classical
Special Functions”) were published. We mention only some of them in this survey.

As Richard Askey (to whose memory we dedicate this survey) confessed in his lectures [2]
on orthogonal polynomials and special functions: “Now, there are relatively large num-
ber of people who know a fair amount about this topic. Nevertheless, . . .most of the
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Before to present the considered new classes of special functions,
let us remind the evolution in the ideas about some particular
cases, called by now as “SF of FC”:

exp(z) =
∞∑
k=0

zk

Γ(k + 1)
−→ (M-L) Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)

Eα,β(z)=
∞∑
k=0

zk

Γ(αk + β)
−→ (Prabh.) E τ

α,β(z)=
∞∑
k=0

(τ)k
Γ(αk + β)

zk

k!

Eα,β(z)=
∞∑
k=0

zk

Γ(αk + β)
−→

(multi-ML: VK) E(αi ),(βi )(z) =
∞∑
k=0

zk

Γ(α1k+β1) . . . Γ(αmk+βm)

(Prabh.) E τ
α,β(z)=

∞∑
k=0

(τ)k
Γ(αk + β)

zk

k!
−→

(JPK) E
(τi ),m
(αi ),(βi )

(z)=
∞∑
k=0

(τ1)k ...(τm)k
Γ(α1k+β1)...Γ(αmk+βm)

zk

(k!)m
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All these SF fall in the scheme of the Wright (Wright-Fox)
generalized hypergeometric functions

pΨq

[
(a1,A1), ..., (ap,Ap)
(b1,B1), ..., (bq,Bq)

∣∣∣∣ z]= ∞∑
k=0

Γ(a1+kA1) . . . Γ(ap+kAp)

Γ(b1+kB1) . . . Γ(bq+kBq)

zk

k!

= H1,p
p,q+1

[
−z

∣∣∣∣ (1− a1,A1), . . . , (1− ap,Ap)
(0, 1), (1− b1,B1), . . . , (1− bq,Bq)

]
. (1)

Denote: ρ =
p∏

i=1
A−Ai
i

q∏
j=1

B
Bj

j , ∆ =
j∑

k=1

Bj −
p∑

i=1
Ai . If ∆ > −1,

the pΨq-function is an entire function of z ∈ C, but if ∆ = −1,
the series is absolutely convergent in the disk {|z |<ρ}, while ....
If all A1 = · · · = Ap = 1,B1 = · · · = Bq = 1, the Wright g.h.f.

reduces to the generalized hypergeometric pFq-function which
itself is a case of the Meijer G -function,

pΨq

[
(a1, 1),. . ., (ap, 1)
(b1, 1),. . ., (bq, 1)

∣∣∣∣ z] = c pFq(a1,. . ., ap; b1,. . ., bq; z)

=
∞∑
k=0

(a1)k ...(ap)k
(b1)k ...(bq)k

zk

k!
=G 1,p

p,q+1

[
−z

∣∣∣∣ 1−a1, ..., 1−ap
0, 1−b1, ..., 1−bq

]
; c = ...
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Definition. (Ch. Fox (1961) The Fox H-function is a generalized
hypergeometric function, defined by means of the Mellin-Barnes
type contour integral

Hm,n
p,q

[
z

∣∣∣∣ (ai ,Ai )
p
1

(bj ,Bj)
q
1

]
=

1

2πi

∫
L

Hm,n
p,q (s) z

−sds, with (2)

Hm,n
p,q (s)=

m∏
j=1

Γ(bj+Bjs)
n∏

i=1
Γ(1−ai−Ai s)

q∏
j=m+1

Γ(1−bj−Bjs)
p∏

i=n+1
Γ(ai+Ai s)

,

with complex variable z ̸= 0 and a contour L (3 types) in the
complex domain; the orders (m, n, p, q) are non negative integers
so that 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters Ai > 0,Bj > 0 are
positive, and ai , bj , i = 1, ..., p; j = 1, ..., q are arbitrary complex
such that Ai (bj+l) ̸= Bj(ai−l ′−1), l , l ′ = 0, 1, 2, ...; i = 1, ..., n;
j = 1, ...,m. For details on types of contours L and the properties
of the H-function, see in many contemporary handbooks on SF as
..., where its behaviour is described in term of the parameters: ρ,
∆, ∇, µ, ... For ∀Ai = Bj = 1, the H-function reduces to a
G -function. 5 / 16



However, exp(z)=
∞∑
k=0

zk

k!
−→ (Le Roy) Fγ(z) =

∞∑
k=0

zk

(k!)γ

−→ (MLR: Gerhold, Garra-Polito) F
(γ)
α,β(z) =

∞∑
k=0

zk

[Γ(αk + β)]γ

(γ > 0) −→ (Rogosin) F
(γ)m
(α,β)m

(z) =
∞∑
k=0

zk

m∏
j=1

[Γ(αjk + βj)]
γj

.

Then, from the 3m-multi-M-L and 3m-MLR functions, we went
further to a new class of SF, as follows:

Definition. Multi-index Mittag-Leffler-Prabhakar functions of Le
Roy type (multi-MLPR), suppose all 4m parameters are > 0:

Fm(z) := Fγi ;m
αi ,βi ;τi

(z) (3)

=
∞∑
k=0

(τ1)k . . . (τm)k
(k!)m

· zk

[Γ(α1k + β1)]
γ1 . . . [Γ(αmk + βm)]

γm

=
∞∑
k=0

ck z
k , with ck =

m∏
i=1

{
Γ(k+τi )

Γ(k+1)
· 1

Γ(τi )
· 1

[Γ(αik+βi )]
γi

}
.
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Theorem. Suppose ∀i = 1, ...,m : αi >0, βi >0, γi >0, τi >0, and
m∑
i=1

αiγi > 0. The multi-index MLPR-function (3) is an entire

function of the complex variable z of order ρ and type σ:

ρ =
1

α1γ1 + · · ·+ αmγm
, i.e.

1

ρ
= α1γ1 + · · ·+ αmγm, (4)

and

σ =
1

ρ

(
m∏
i=1

(αi )
−αiγi

)ρ

,

that is,

σ =
α1γ1 + · · ·+ αmγm

(αα1γ1
1 · · ·ααmγm

m )
1/(α1γ1+···+αmγm)

. (5)

Some of our results include: - Mellin-Barnes type integral
representations for Fm(z); - Laplace transform of this function;
- Image of Fm(z) under operators of FC (Erdélyi-Kober fract.
integrals), etc.
In all cases the results appear again as functions of same

multi-index MLPR-type but with increased multiplicity m and
additional parameters.
Published in 2 papers (2023): VK + JPK + Rogosin/ Dub. 7 / 16



Definition. The so-called I -function was defined by Rathie,
1997, by means of a kind of Mellin-Barnes type integral

Im,n
p,q

[
z

∣∣∣∣ (ai ,Ai , αi )
p
1

(bj ,Bj , βj)
q
1

]
=

1

2πi

∫
L

Im,n
p,q (s) z−sds, z ̸= 0,

with Im,n
p,q (s)=

m∏
j=1

Γβj (bj+Bjs)
n∏

i=1
Γαi (1−ai−Ai s)

q∏
j=m+1

Γβj (1−bj−Bjs)
p∏

i=n+1
Γαi (ai+Ai s)

.

(6)

Note that if ∀αi = ∀βj = 1, i = 1, ..., p, j = 1, ..., q, this is the Fox
H-function. But in general, these are NOT positive integers. Then,
we have a new multi-valued function with singularities that are
branch points, etc. Some more simple case of this SF, is the
H̄-function of Inayat-Hussain, 1987, where in particular some of
the αi , βj are equal to 1, namely: αi = 1, i = n+1, ..., p and
βj = 1, j = 1, ...,m:

H
m,n
p,q

[
z

∣∣∣∣ (ai ,Ai , αi )
p
1

(bj ,Bj , βj)
q
1

]
=

1

2πi

∫
L

m∏
j=1

Γ1(bj+Bjs)
n∏

i=1
Γαi (1−ai−Ai s)

q∏
j=m+1

Γβj (1−bj−Bjs)
p∏

i=n+1
Γ1(ai+Ai s)

z−sds.
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It happens that some important SF that are not H-functions and

pΨq-functions, can be presented in terms of the I - and
H̄-functions. This was an argument in the initial works by
Inayat-Hussain (with title: “... hypergeometric series derivable
from Feynman integrals”) and by Rathie, and we stuck on some
hints that other more popular SF fall in the scheme of the
I -functions, as: the polylogaritm function, the Riemann ζ-function,
Mathiew series, etc. Just for example, the polylogarithm function

Liα(z) =
∞∑
k=1

zk

kα
, |z | < 1, α ∈ C,

can be identified as such a function. Namely, we derived a
Mellin-Barnes type integral representation as for a H̄-function:

Liα(z) = − 1

2πi

1/2+i∞∫
1/2−i∞

Γα+1(s) Γ(1− s)

Γα(1 + s)
(−z)s ds

= −H
1,1
1,2

[
− z

∣∣∣∣ (1, 1, α+ 1)
(1, 1, 1), (0, 1, α)

]
, α > 0, L = {c−i∞, c+i∞}.

(All singularities of the Gamma’s in numerator are to the left of
s=0 and to the right of s=1, and one can take c = 1/2.) 9 / 16



The generalized Hurwitz-Lerch Zeta function:

Φ
(ρ,σ,κ)
λ,ν,µ (z , s, a) =

∞∑
n=0

(λ)ρn(µ)σn
(ν)κn n!

· zn

(n + a)s
, |z | < ρ∗. (7)

According to (Srivastava-Saxena-Pogány-Saxena, 2011), it has the
following contour integral representation:

Φ
(ρ,σ,κ)
λ,ν,µ (z , s, a) =

Γ(ν)

Γ(λ)Γ(µ)

×
∫
L

Γ(−ζ)Γ(λ+ ρζ)Γ(µ+ σζ) Γs(ζ + a)

Γ(ν + κζ) Γs(ζ + a+ 1)
(−z)ζ dζ, (8)

for |arg(−z)| < π, and path of integration L = (c − i∞, c + i∞)
that separates the poles of Γ(−ζ) , Γ(λ+ ρζ), Γ(µ+ σζ), Γ(ζ + a).
Then, the relation with the H̄-function is obtained:

Φ
(ρ,σ,κ)
λ,ν,µ (z , s, a) =

Γ(ν)

Γ(λ)Γ(µ)

× H
1,3
3,3

[
−z

∣∣∣∣ (1− λ, ρ, 1), (1− µ, σ, 1), (1− a, 1, s)
(0, 1), (1− ν, κ, 1), (−a, 1, s)

]
. (9)

Several important special cases are considered, incl. Riemann Zeta
function ζ(s) =

∑∞
0 zn/ns (z = 1, a = 0, ...), etc. 10 / 16



Our hypothesis was - now proved, that under suitable conditions
on the contour and situation of the singularities of the
Gamma-functions, the Le Roy type functions can also be
represented in terms of I - and in particular, H̄-functions (and of
almost same kind as the polylogarithm!). Namely:

F (γ)(z) = I 1,11,2

[
−z

∣∣∣∣ (0, 1, 1)
(0, 1, 1), (0, 1, γ)

]
, the original Le Roy function;

F
(γ)
α,β(z) = I 1,11,2

[
−z

∣∣∣∣ (0, 1, 1)
(0, 1, 1), (1− β, α, γ)

]
, Gerhold, Garra-Polito,...;

F
(γ)
α,β, τ (z) = I 1,11,2

[
−z

∣∣∣∣ (1− τ, 1, 1)
(0, 1, 1), (1− β, α, γ)

]
, Prabhakar type, JPK.

While, for the multi-index M-L function of Le Roy type (with
∀τi = 1, as in Rogosin),

F
(γi )

m
1

(αi )
m
1 ,(βi )

m
1
(z)= I 1,11,m+1

[
−z

∣∣∣∣ (0, 1, 1)
(0, 1, 1), (1−βi , αi , γi )

m
1

]
=H

1,1
1,m+1(−z).

but: E(αi )
m
1 ,(βi )

m
1
(z) = H1,1

1,m+1

[
−z

∣∣∣∣ (0, 1)
(0, 1), (1−βi , αi )

m
1

]
, VK, H-f.
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Before to present our result in the most general case of Le Roy
type functions Fm (with 4m parameters), it is interesting to
introduce also a “fractional powers“ extension of the Wright
(Fox-Wright) functions pΨq.

Theorem. Define the generalized Wright-Fox function:

pΨ̃q

[
(a∗j ,A

∗
j ;α

∗
j )

p
j=1

(b∗i ,B
∗
i ;β

∗
i )

q
i=1

∣∣∣∣ z] := ∞∑
k=0

p∏
j=1

Γα
∗
j (A∗

j k + a∗j )

q∏
i=1

Γβ
∗
i (B∗

i k + b∗i )

· zk

k!

= H
1,p
p,q+1

[
−z

∣∣∣∣ (1− a∗j ,Aj , α
∗
j )

p
1

(0, 1), (1− b∗i ,B
∗
i , β

∗
i )

q
1

]
. (10)

Here the parameters for this H̄ function are:

µ = 1+
q∑

i=1
β∗
i B

∗
i −

p∑
j=1

α∗
j A

∗
j and R =

q∏
i=1

(B∗
i )

β∗
i B

∗
i /

p∏
j=1

(A∗
j )

α∗
j A

∗
j .

Then this series is an entire function (i.e., abs. conv. for all
0< |z |<∞) if µ > 0; or if µ = 0: is analyic in |z |<R. Suitable
cuts are to be inserted in C so to fix single-valued branches for zk

and for included multi-valued Γ-functions with arbitrary powers.
12 / 16



Theorem. Under the assumptions

αi > 0, βi > 0, γi > 0, τi > 0, ∀i = 1, ...,m,

m∑
i=1

αiγi > 0, (11)

the multi-index Mittag-Leffler-Prabhakar function of Le Roy type
Fm can be represented in terms of the generalized Wright-Fox
function pΨ̃q and more generally, as H-function and I -function:

Fm(z) :=Fγi ;m
αi ;βi ; τi

(z)=T ·mΨ̃2m−1

[
(τi , 1, 1)

m
1

(1, 1, 1)(m−1)−times, (βi , αi , γi )
m
1

∣∣∣∣ z]
= T · H1,m

m,2m

[
− z

∣∣∣∣ (1− τi , 1, 1)
m
1

(0, 1)m−times, (1− βi , αi , γi )
m
1

]
(12)

= T · I 1,mm,2m

[
− z

∣∣∣∣ (1− τi , 1, 1)
m
1

(0, 1, 1)m−times, (1− βi , αi , γi )
m
1

]
, T = 1/

Γ∏
i=1

(τi ).

Note: For these mΨ̃2m−1 and H̄-functions: µ=
∑m

i=1 αiγi >0,
OK. The singularities of the involved Γ-functions in the M-B type
integral for H̄1,m

m,2m lie resp. in intervals s>1, s<−m0, s<−m̃0,
where m0 :=min{τ1, ..., τm}>0, m̃0 :=min{β1/α1, ..., βm/αm}>0.
Then a contour (c − i∞, c + i∞) with c ∈ (−min(m0, m̃0), 1),
will be in a strip with no branch points and no branch cuts inside.

13 / 16



Definition. (Gelfond-Leontiev, 1951) Let the function

φ(λ) =
∞∑
k=0

φkλ
k be an entire function with a growth (order

ρ > 0 and type σ ̸= 0), such that lim
k→∞

k
1
ρ k
√
|φk | = (σeρ)

1
ρ . Then

the operation

f (z) =
∞∑
k=0

akz
k Dφ7−→ Dφf (z) =

∞∑
k=1

ak
φk−1

φk
zk−1, (13)

is called a G-L operator of generalized differentiation with respect
to the function φ(λ), and the corresponding G-L operator of
generalized integration can be also introduced:

Lφf (z) =
∞∑
k=0

ak
φk+1

φk
zk+1, (14)

Evidently, DφLφf (z) = f (z). It happens also that the function φ is
eigen-function of the G-L operator generated by it.
The classical diff./integr. are generated by exp z ; while for the

M-L function and multi-index M-L functions we constructed
corresp. G-L operators, defined by series of the above forms. And
specially, for the G-L gen. integr. we provided also fractional
integrals’ representations with kernels H1,0

1,1 , resp. H
m,0
m,m. 14 / 16



We aimed to construct G-L operators D and L, generated by the

Le Roy type functions, in the case F
(γ)m
(α,β)m

, by means of their

coefficients φk = 1/
∏m

i=1 Γ
γi (αik + βi ). And we proved the

eigen-function relations:

DF
(γ)m
(α,β)m

(λz)= λF
(γ)m
(α,β)m

(λz), λ ̸= 0. (15)

For the G-L integration the corresponding relation is

LF
(γ)m
(α,β)m

(λz) =
1

λ
F
(γ)m
(α,β)m

(λz)− 1

λ
m∏
i=1

Γγi (βi )

, λ ̸= 0. (16)

Theorem. The G-L integration L, generated by means of the Le

Roy type function F
(γ)m
(α,β)m

as a series, can be represented also by
means of the integral operator

Im f (z)=LmMLR f (z)=z

1∫
0

Im,0
m,m

[
σ

∣∣∣∣ (βi , αi , γi )
m
1

(βi − αi , αi , γi )
m
1

]
f (zσ)dσ.

(17)
This can be interpreted (again) as a kind of a generalized fractional
integration of multi-order (α1, ..., αm). Note that this kernel is well
defined I -function in the unit disc and vanishes for |z | > 1. 15 / 16



In the case m = 1 the operators I1 can be considered as analogues
of the Erdélyi-Kober (E-K) operators ! Namely, we the following
composition/decomposition property, like in the GFC, where the
(m-tuple) gen. fr. integrals can be represented also as commutable
compositions of m single E-K fractional integrals.

Theorem. For entire functions f (z),

Im f (z) =

[
m∏
i=1

I1i

]
f (z) = I1m

{
I1m−1 · · ·

[
I11
]}

f (z). (18)

The above composition is commutable. The analogues of the E-K
fractional integrals of order αi > 0 have the form

I1i f (z) = z

1∫
0

I 1,01,1

[
σ

∣∣∣∣ (βi , αi , γi )
(βi − αi , αi , γi )

]
f (zσ)dσ. (19)

A list of OPEN problems ...
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