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Introduction

Lund-Regge problem:

Find a minimal number of functions, satisfying some natural conditions,
that determine the surface up to a motion in Euclidean or
pseudo-Euclidean space.

[Lund F., Regge T., Unified approach to strings and vortices with soliton
solutions. Phys. Rev. D, 14, no. 6 (1976), 1524-1536]

The problem is solved for zero mean curvature surfaces of co-dimension
two in the Euclidean 4-space E*, the Minkoswki space E$ and the
pseudo-Euclidean space with neutral metric E3.

Bennuka Munywesa (MIMW-BAH) OTyeTHa cecusn’2023 2/31



Minimal surfaces in E*

Tribuzy and Guadalupe [Rend. Semin. mat. R. Univ. Padova, 1985]

The Gauss curvature K and the curvature of the normal connection » of
any minimal non-super-conformal surface parametrized by special
isothermal parameters in the Euclidean space E* satisfy the following
system of partial differential equations

(K2—%%%Amué—4£):8K
—

K+ s

(K? — )4Am

= —4x
where A is the Laplace operator A = 2 + {?‘/22
Conversely, any solution (K, ) to th|s system determines a unique (up to

a rigid motion in E*) minimal non-super-conformal surface with Gauss
curvature K and normal curvature .
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Minimal surfaces in E*

The class of minimal super-conformal surfaces in E* is locally
equivalent to the class of holomorphic curves in C? = E*.

[Eisenhart L., Minimal surfaces in Euclidean four-space, Amer. J. Math. 34
(1912), 215-236]
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Minimal surfaces in E7

The same problem was solved for surfaces with zero mean curvature in E7.

Alias and Palmer [Math. Proc. Cambridge Philos. Soc., 1998]

Spacelike surfaces with zero mean curvature in E{ are described by the
following system of partial differential equations

(K2 + 52)3 Aln(K2 + 52) = 8K

(K2 + %2)% A arctan % =2

where K and s are the Gauss curvature and the normal curvature,
respectively.
Conversely, any solution (K, ) to this system determines a unique (up to a

rigid motion in [E7) spacelike surface with zero mean curvature whose Gauss
curvature and normal curvature are the functions K and s, respectively.
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Minimal surfaces in E7

G. Ganchev, V.M. [Israel J. Math., 2013]

The Gauss curvature K and the normal curvature s of any timelike
surface with zero mean curvature satisfy the following system of natural
partial differential equations

(K2 + 52)% AP In(K? + 52) = 8K
(K2 + %2)% A" arctan % = 2x
where A" denotes the hyperbolic Laplace operator A" = 86—52 — (%22.

Conversely, any solution (K, 5) to the above system, determines a unique
(up to a rigid motion in E}) timelike surface with zero mean curvature such
that K is the Gauss curvature and s is the normal curvature of the surface. |
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Minimal surfaces in 3

G. Ganchev, K. Kanchev [Comptes rendus de I'Académie bulgare des

Sciences, 2019]

Spacelike surfaces with zero mean curvature (maximal spacelike
surfaces) in E3 are characterized by the following system of partial
differential equations:

K — K? — %> 0.

The Gauss curvature K and the normal curvature 3¢ of any maximal
spacelike surface in E} satisfy the condition

K? — % > 0.

The equality case is the analogue of the super-conformal minimal surfaces
in the Euclidean space E*.
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Minimal surfaces in 3

Y. Aleksieva, V.M. [J. Geom. Phys., 2019]

The Gauss curvature K and the normal curvature 3¢ (expressed in terms of
the canonical isothermal coordinates) of any minimal Lorentz surfaces of
general type satisfy the following system of natural partial differential
equations:

K2 — 2|7 AbIn [K? — 52| = 8K
K+ s K? — 5% #0. (1)

-

\K2—%2\%Ah|n

’:4%

Conversely, any solution (K|, 5) to this system determines a unique (up to a
rigid motion in E3) minimal Lorentz surface of general type with Gauss
curvature K and normal curvature s and such that the given parameters
are canonical.
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Introduction

How to introduce canonical parameters and obtain natural equations for
other classes of surfaces, different from the minimal ones, in 4-dimensional

spaces?

Can we solve the Lund-Regge problem for other classes of surfaces,
different from the minimal ones, in 4-dimensional spaces?

We solve this problem for surfaces with parallel normalized mean
curvature vector field in pseudo-Euclidean 4-spaces.
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Introduction

Classification results on surfaces with parallel mean curvature vector
field:

@ Surfaces with parallel mean curvature vector field in Riemannian space
forms were classified in [B.-Y. Chen, Geometry of submanifolds, 1973]
and Yau [S. Yau, Amer. J. Math., 1974].

@ Spacelike surfaces with parallel mean curvature vector field in
pseudo-Euclidean spaces with arbitrary codimension were classified in
[B.-Y. Chen, J. Math. Phys. 2009] and [B.-Y. Chen, Cent. Eur. J.
Math., 2009].

@ Lorentz surfaces with parallel mean curvature vector field in arbitrary
pseudo-Euclidean space ET are studied in [B.-Y. Chen, Kyushu J.
Math., 2010] and [Y. Fu, Z.-H. Hou, J. Math. Anal. Appl., 2010].

@ A survey on submanifolds with parallel mean curvature vector in
Riemannian manifolds as well as in pseudo-Riemannian manifolds is
presented in [B.-Y. Chen, Arab J. Math. Sci., 2010].
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Introduction

Definition

A submanifold in a Riemannian manifold is said to have parallel
normalized mean curvature vector field if the mean curvature vector is
non-zero and the unit vector in the direction of the mean curvature vector
is parallel in the normal bundle [B.-Y. Chen, Monatsh. Math., 1980].

e Every analytic surface with parallel normalized mean curvature vector
in the Euclidean m-space R™ must either lie in a 4-dimensional space
R* or in a hypersphere of R™ as a minimal surface [B.-Y. Chen,
Monatshefte fiir Mathematik 1980].

@ Spacelike submanifolds with parallel normalized mean curvature vector

field in a general de Sitter space are studied in [Shu, S., J. Math.
Phys. Anal. Geom., 2011)].
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Introduction

We study timelike surfaces with parallel normalized mean curvature
vector field in the Minkowski 4-space E7.

Our aim: To describe these surfaces in terms of minimal number of
functions satisfying a minimal number of partial differential equations.

We prove that the surfaces with PNMCVF can be described in terms of
three functions satisfying a system of three partial differential equations.

Our approach: To introduce special geometric parameters on each such
surface (canonical parameters).
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Canonical parameters on timelike surfaces with PNMCVF

R} — the four-dimensional Minkowski space with the metric (.,.) of
signature (3,1).

Let M : z = z(u,v), (u,v) € D, (D C R?) be a local parametrization on
a timelike surface free of minimal points.

V and V - the Levi Civita connections on RT and M, respectively. The
formulas of Gauss and Weingarten:

Viy = Vyy + o(x,y);
Vi€ = —Aex + Di&,

. 1
The mean curvature vector field H = Etr 0.

Bennuka Munywesa (MIMWU-BAH) OTueTHa cecus'2023 13 /31



Canonical parameters on timelike surfaces with PNMCVF

Locally, there exist parameters (u, v) on a timelike surface M, such that:
g =—f(u,v)(du®dv+dv®du), f(uv)>D0.
The coefficients of the first fundamental form are:

E=(z,2,)=0; F={(z4,2,)=—f*(u,v); G={z,2)=0.

. . z z
We consider the pseudo-orthonormal tangent frame field: x = ?”, y = ?V

<X7X> =0, <X7y> = -1, <y’y> =0.

The mean curvature vector field is given by:

H=—o(x,y).
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Canonical parameters on timelike surfaces with PNMCVF

Let H # 0 and {x,y, n1, no} — pseudo-orthonormal frame field such that
H =wvny, v = ||H||, n2 is determined up to orientation.

Remark: The frame field {x, y, n1, m2} is geometrically determined:

x, y are the two lightlike directions in the tangent space;

ny is the unit normal vector field collinear with the mean curvature vector
field H;

ny is determined by the condition that {n1, n2} is an orthonormal frame
field of the normal bundle (n; is determined up to a sign).

We call this pseudo-orthonormal frame field {x,y, n1, n2} a geometric
frame field of the surface.
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Canonical parameters on timelike surfaces with PNMCVF

Derivative formulas:

Vix = m1x + A1+ pam Vxny = —vx + A1y + B1no
6x)’ = —71y —vn ﬁynl = dAox — vy + Bony
6)/)( = 772X —vm Vi = +pay — Pim
6yy = Y2y + A2ni + p2n ﬁym = uox — Bom

u fv
where 7, = i x(Inf), 7y = ol y(Inf).
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Canonical parameters on timelike surfaces with PNMCVF

Proposition

Let M be a timelike surface in the Minkowski space Rﬁ'. Then, M has
parallel mean curvature vector field if and only if 51 = 3> = 0 and
v = const.

Proposition

Let M be a timelike surface in the Minkowski space Rﬁ'. Then, M has
parallel normalized mean curvature vector field if and only if
B1 = B> =0 and v # const.
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Canonical parameters on timelike surfaces with PNMCVF

We consider timelike surfaces with parallel normalized mean curvature
vector field (PNMCVF), i.e. we assume that 51 = > = 0 and v # const.

The surfaces with parallel normalized mean curvature vector field can be
divided into two main classes:

o K — H? # 0 (which is equivalent to yyp2 # 0) in a sub-domain;
e K—H?=0 (which is equivalent to 12 = 0) in a sub-domain.
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Surfaces satisfying K — H? # 0

In the case K — H? # 0, i.e. puipo # 0, there exist smooth functions
©(u) > 0 and ¥(v) > 0 such that:

FPlunl = o(u);  F2lpz| = ¥(v).

We consider the following change of the parameters:

u

u:/ V(u)du+ 1y, To = const,
ug
v

v:/ V(v)dv + Vg, Vo= const.
Vo

The second fundamental tensor o
o(X,X) = An + 7 ny;

_ €2+ €2 __
o(y,y)==Anm + —nn.
€1 €1

where sign(p1) = €1, €1 = +1 and sign(pup) = €2, g2 = £1.
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Surfaces satisfying K — H? # 0

(T, V) are special isotropic parameters:

g=-F(@,V)(di®dv+dvedi), FG,v)=—.

Let M be a timelike surface with parallel normalized mean curvature vector
field in R and K — H? # 0. The isotropic parameters (u, v) are said to be
canonical if the metric function f is expressed by:

1

mv

f(u,v)= p# 0.

Proposition

Each timelike surface with parallel normalized mean curvature vector field
satisfying K — H?> # 0 locally admits canonical parameters.

v
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Surfaces satisfying K — H? # 0

With respect to canonical isotropic parameters the derivative formulas are:

Vix = mx + Any + pno; Vi = —uvx + \y;
%Xy = —Y1y —vni; 6yn1 = —elXx —vy;
Vyx = —px  —wvng; Vi = +uy;
%yy = Y2y — ANy — gpn; %yn2 = —egux,

where £ = 1 in the case K — H?2 > 0, and £ = —1 in the case K — H2 < 0.

Geometric meaning of the canonical parametrization: if (u, v) are canonical

. . Z, Z . .
isotropic parameters, then x = 7” and y = ?V satisfy the relation:

o(x,x) = —o(y,y), inthe case K —H? > 0;
o(x,x) = a(y,y), in the case K — H? <0.
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Surfaces satisfying K — H? # 0

Moreover, the functions 41 and 7, are expressed in terms of the function p

as follows:
e Ry @)

7= 2= :
2/l 2/|ul
Then, from the integrability conditions we obtain the following system of
PDEs:

vy + A = A(In|u|)v;
Ay —evy = A(In|p])u;
lul (Inful)y, = —v? — e\ + 1?).
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Fundamental Theorem

Fundamental Theorem 1 [V. Bencheva, V.M., 2023]

Let A(u,v), p(u, v) and v(u, v) be smooth functions, u # 0, v # const, defined
in a domain D, D C R?, and satisfying the conditions

vy ‘|‘ )\v = )\(ln |,LL|)VI
Au—evy = A(In|p])u; (3)
il (nul),, = =% — (X + p?),

where ¢ = £1. If {xo, Y0, (m)o, (72)o} is a pseudo-orthonormal frame at a point
po € R}, then there exists a subdomain Dy C D and a unique timelike surface
M :z=2z(u,v), (u,v) € Dy with parallel normalized mean curvature vector
field, such that M passes through po, {x0, Yo, ()0, (n2)o} is the geometric
frame of M at the point pg, the functions A(u, v), u(u, v), v(u, v) are the
geometric functions of the surface, and K — H2 > 0 in the case € = 1, resp.

K — H? < 0 in the case ¢ = —1. Furthermore, (u, v) are canonical isotropic
parameters of M.

v
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Surfaces satisfying K — H> =0

In the case K — H2 =0, i.e. 1o = 0, p3 + p3 # 0:

v =v(u)
and we have two PDEs:
vy + Ay = A(In|u|)v;
l(in 1) = —12.
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Fundamental Theorem

Fundamental Theorem 2 [V. Bencheva, V.M., 2023]

Let M(u,v), u(u, v) and v(u) be smooth functions, p # 0, v # const,
defined in a domain D, D C R?, and satisfying the conditions

vy + Ay = A(In[pu])v;

lul (Infl), = =% (4)

If {x0, ¥0, (M)o, (M)o} is a pseudo-orthonormal frame at a point py € R},
then there exists a subdomain Dy C D and a unique timelike surface
Mz =z(u,v), (u,v) € Dy with parallel normalized mean curvature
vector field, such that M passes through po, {x0, yo, (n1)o, (n2)o} is the
geometric frame of M at the point pg, the functions A(u, v), p(u, v), v(u)
are the geometric functions of the surface, and K — H? = 0. Furthermore,
(u, v) are canonical isotropic parameters of M.

4
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Canonical parameters on timelike surfaces with PNMCVF

Remark: The canonical parameters are determined up to the following
changes:

Uu=24u+ c, c1 = const;

V=2xv+ o, Ccp = const.

We have proved similar results for surfaces with parallel normalized mean
curvature vector field in the Euclidean space E*, spacelike surfaces with
PNMCVF in the Minkowski space E4, and Lorentz surfaces in ]Eg.

Examples of solutions to the systems of PDEs characterizing surfaces with
PNMCVF in E* E%, and E3, can be found in the class of the so-called

meridian surfaces — 2-dimensional surfaces lying on rotational hypersurfaces
in E* E?% or }Eg, resp.
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Thank you for your attention!
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