On the minimal sum of edges in a signed edge-dominated graph

Danila Cherkashin
on a joint work with P. Prozorov

Let G be a graph; for a given edge $e=(u, v)$ define its closed edge-neighborhood as an edge subset $N[e]$ formed by e and all edges of G adjacent to e. A weight function $f: E \rightarrow\{+1 ;-1\}$ is called a signed edge domination function of G if

$$
\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geqslant 1
$$

for every $e \in E$; we say that (G, f) is an $S E D$-pair of order $|V|$.
The following problem was posed by Xu in [2]. What is

$$
g(n):=\min \{s[(G, f)] \mid(G, f) \text { is an SED-pair of order } n\}
$$

for each positive integer n ?
Since a blow-up preserves the signed edge domination property, one may deduce that

$$
g(n)=(1+o(1)) H n^{2}
$$

for some negative constant H.
We refine [1] known upper and lower bound on H, id est

$$
-\frac{1}{25} \leqslant H \leqslant-\frac{1}{8(1+\sqrt{2})^{2}}
$$

It turns out that the problem quickly reveals its analytical nature. At the moment we have a deal with a multivariate polynomial optimization problem, which we are unable to solve. On the other hand it definitely refines the current lower bound on H.

References

[1] Danila Cherkashin and Pavel Prozorov. On the minimal sum of edges in a signed edge-dominated graph. The Electronic Journal of Combinatorics, 29(3):P3.38, 2022.
[2] Baogen Xu. On signed edge domination numbers of graphs. Discrete Mathematics, 239(1-3):179-189, 2001.

