Зарежда Събития
Това събитие е минало събитие.

В рамките на онлайн семинара

Problems and Methods Related to Coding Theory

организиран от:

Института по математика и информатика на Българската академия на науките,

Новосибирския държавен университет, Новосибирск, Русия,

Института по математика “С. Л. Соболев”, Сибирски клон на Руската академия на науките, Новосибирск, Русия,

на 2 февруари 2021 г. от 13:00 ч. (18:00 ч. в Новосибирск, 14:00 ч. в Москва)

 проф. Сергей Августинович, Институт по математика “С. Л. Соболев”, Новосибирск, Русия,

ще изнесе доклад на тема:

Совершенные раскраски циркулянтных графов
(Perfect colorings of circulant graphs).

Резюме: A Cayley graph of the infinite cyclic group having generators d1, d2, d3, …, dn is called circulant. It is denoted by С(d1, d2, d3, …, dn). A coloring of the vertex set of a graph is called perfect if for any colors i and j and any vertex x of color i, the number of its neighbors of color j depends only on i and j. It is well known that any perfect coloring of an infinite circulant graph is periodic.

There is a natural homomorphism from the n-dimensional lattice into an arbitrary  circulant graph with n distances. In particular, this рmeans that every perfect coloring of a circulant graph with n distances induces a perfect coloring of an n-dimensional rectangular lattice with the same parameters. In the talk some constructions of colorings and open questions will be considered.

 

Time: Feb 2, 2021, 13:00 Sofia (18:00 Novosibirsk, 14:00 Moscow)

Join Zoom Meeting
https://us02web.zoom.us/j/81418728292?pwd=UUxURWRzMThxQXZrcXpBT0Z5MDlmQT09

Meeting ID: 814 1872 8292
Passcode: 471759
One tap mobile
+35924925688,,81418728292#,,,,*471759# Bulgaria
+35932571633,,81418728292#,,,,*471759# Bulgaria

Dial by your location
+359 2 492 5688 Bulgaria
+359 3 257 1633 Bulgaria
+7 495 283 9788 Russian Federation
+7 499 951 6379 Russian Federation
+7 499 951 6380 Russian Federation
+7 812 426 8988 Russian Federation
Meeting ID: 814 1872 8292
Passcode: 471759
Find your local number: https://us02web.zoom.us/u/kSrbG9xyj

Share This Story, Choose Your Platform!