Поредната сбирка на СЕМИНАРА на секция

 Математическо моделиране и числен анализ

 

 ще се състои на 7.12.2016 г.сряда, от 11:00 часа

в зала 403 на Института по математика и информатика

 

Доклад на тема:

Processing of high-resolution CT data: denoising, edge detection, and segmentation

 

  ще изнесе Станислав Харизанов, Институт по математика и информатика, БАН 

 


 

Поредната сбирка на СЕМИНАРА на секция

Математическо моделиране и числен анализ

ще се състои на 
03.10.2016 г.понеделникот 13:30 часа

в зала 
503 на Института по математика и информатика

 

Доклад на тема:

Parallel algorithms for some actual problems

 

  ще изнесе Dr. Alexander Ayriyan, Joint Institute for Nuclear research, Dubna

 


 Поредната сбирка на СЕМИНАРА на секция

Математическо моделиране и числен анализ

ще се състои на 27.07.2016 г.сряда, от 10:00 часа

в зала 
403 на Института по математика и информатика

 

Доклад на тема:

Mathematical model for the dynamics of the autoimmune disease alopecia areata in cycling hair follicles

 

ще изнесе Dr.Atanaska Dobreva, Department of Mathematics, Florida State University

 

AbstractAlopecia areata is an autoimmune condition which causes distinct patterns of hair loss. The disease development mechanisms are still not completely understood, and treatment is often difficult. Hair follicles are organs that constantly cycle through phases of growth, regression, and rest. A main feature of alopecia areata is that it interrupts and makes the growth stage very short. We first construct a model of ordinary differential equations to describe how the condition develops over time in a small cluster of homogeneous growing follicles. The model incorporates interactions between hair follicles and the immune system in accordance with the immune privilege collapse hypothesis for disease pathogenesis. As a next step, we elaborate the dynamical system by including the underlying hair cycle and provide simulations for states of health, disease, and treatment. In addition, we apply parameter sensitivity analysis to determine how the processes reflected in the model influence the growth phase length.

 


 Поредната сбирка на СЕМИНАРА на секция

Математическо моделиране и числен анализ


ще се състои на 27.07.2016 г.сряда, от 11:00 часа

в зала 
403 на Института по математика и информатика

 

Доклад на тема:

Low-Rank Approximation and Its Applications

  ще изнесе Prof. Ivan Markovsky, Vrije Universiteit, Brussel

 

Abstract. Mathematical engineering continuously addresses new applications and solves new problems. The expansion of existing methods and applications makes it difficult to maintain a common theoretical framework. This talk shows the potential of the structured low-rank approximation setting to unify problems of data modeling from diverse application areas. An example treated in more details in the presentation is identification of a linear time-invariant system from observed trajectories of the system. We present an optimization method based on the variable projection principle. The method can deal with data with exact as well as missing (unknown) values.

 


 Поредната сбирка на СЕМИНАРА на секция

"Математическо моделиране и числен анализ" към ИМИ-БАН

ще се състои на 26.05.2016 г., четвъртък, от 14:00 часа

в зала 403 на Института по математика и информатика.


Доклад на тема:

"On best uniform approximation with low-rank matrices"


ще изнесе
 Clemens Hofreither, Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria.

Abstract
Given a matrix, we study the best-approximation error by a matrix of lower rank. Here we are interested in a class of elementwise norms, of which the Frobenius and the Chebyshev (entrywise maximum) norms are special cases. Based on a result by A. Pinkus (2012), we derive both lower and upper bounds for the best-approximation error by a rank k matrix in the maximum norm. The quantities used in the estimates are absolute determinants of certain maximal submatrices, and we establish some connections to the theory of pseudoskeleton approximation, where this "maximal volume concept" has been applied previously. We illustrate the results by the simple example of some 2x2 matrices.

 


Поредната сбирка на СЕМИНАРА на секция

Математическо моделиране и числен анализ

ще се състои на 
07.03.2016 г.понеделник, от13:00 часа

в зала   403    на Института по математика и информатика

Доклад на тема:

Steady states of polynomial ODEs

 ще изнесе Prof. Carsten Conradi,  HTW, Berlin.

 

Abstract. Polynomial Ordinary Differential Equations are an important tool in many areas of quantitative biology. Due to large measurement errors few experimental repetitions and a limited number of measurable components, confidence intervals of estimated parameter values are often several orders of magnitude. One therefore has to study families of parametrized polynomial ODEs. In this talk a class of ODEs is discussed that admits a monomial parameterization of the steady state variety. To this class belong, for example, multisite phosphorylation systems. For a special instance of this subclass, one can formulate parameter conditions that guarantee the existence of three steady states.


Поредната сбирка на СЕМИНАРА на секция

Математическо моделиране и числен анализ

ще се състои на
02.11.2015 г.,понеделник, от14:15 часа

в зала 403 на Института по математика и информатика

 

Доклад на тема:

Modelling of intrinsic Josephson junctions in high temperature superconductors“

ще изнесе проф. д.ф.-м.н Юрий М. Шукринов,
Лаборатория по теоретична физика, ОИЯИ, Дубна


15:15 часа доклад на тема:

Cavity and background oscillations inintrinsic Josephson junctions“

ще изнесе гл.ас. д-р Иван Христов, ФМИ, СУ

 


На 29.05. 2014 (четвъртък) от 14 часа в зала 403 на ИМИ

на сбирка на семинара на секция


"Математическо моделиране и числен анализ"

ще докладва

Dr. DI. Stefan Takacs от Technische Universität Chemnitz. 

 

Докладът е на тема:

"All-at-once multigrid methods for optimal control problems with inequality constraints"

 

Abstract. In this talk we will discuss the solution of all-at-once multigrid methods for optimal control problems of tracking type with box constraints for the control variable.

One possibility to solve such problems using multigrid methods is to use a (semi-smooth) Newton solver.

Here, a standard multigrid method would be used as an solver for linear sub-problems that occur within this iteration.

Recently, it was possible to construct and analyze multigrid solvers that can be directly applied to elliptic problems with box constraints (like obstacle problems).

Those methods have shown good convergence behavior in practice. In the present talk we will discuss how the ideas of such methods can be extended to control problems.

 


Секция „БИОМАТЕМАТИКА И НАУЧНИ ИЗЧИСЛЕНИЯ” при СМБ

Секция „МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ И ЧИСЛЕН АНАЛИЗ” при ИМИ–БАН

С Е М И Н А Р

БИОМАТЕМАТИКА И НАУЧНИ ИЗЧИСЛЕНИЯ

на 28 май 2014 г. (сряда) от 11:00 ч., мултимедийна зала 055 „Академик Стефан Додунеков” на Института по математика и информатика, БАН

ВСТЪПИТЕЛНА ЛЕКЦИЯ на професор д-р Нели Димитрова на тема Асимптотична стабилизируемост на математически модел на биореактор